

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE Đ COIMBRA

INFLUENCE OF POROUS DAMAGE ON FATIGUE CRACK GROWTH

E. R. Sérgio¹ • D. M. Neto¹ • F. V. Antunes¹

¹CEMMPRE, Department of Mechanical Engineering, University of Coimbra, Portugal

IbCSI 2022 5th Iberian Conference on Structural Integrity 31-1 March 2022 Coimbra (Portugal)

Fatigue Crack Growth Mechanisms

- The fatigue crack growth rate is defined by $da/dN-\Delta K$ curves.
- ΔK is the crack driving force.

E.R. Sérgio (edmundo.sergio@uc.pt)

 These curves cannot predict the effect of stress ratio or variable amplitude loading.

FCG is due to the occurrence of several, interdependent, damage mechanisms at the crack tip zone.

Crack Tip Plastic Deformation

- Crack tip plastic deformation is generally assumed to be the main damage mechanism acting at the process zone.
- Crack closure has also proved to be a crucial phenomenon in FCG.
- Plastic deformations induce porous damage.

Objectives

 Evaluate the interactions between porous damage, characterized by the GTN damage, plastic strain and crack closure.

• **Predict** FCG for the 2024-T351 aluminum alloy.

All numerical simulations were performed with the in-house finite element code DD3Imp

5

Material Constitutive Model

- GTN considers a free of voids matrix.
- The shape of the yield surface was defined by the **von Mises** yield criterion.
- The hardening behavior was described by the **Swift** and **Lemaitre–Chaboche** hardening laws.
- The isotropic elastic behavior was given by the generalized Hooke's law.

IbCSI 2022 | March 2022

Material Parameters

• The isotropic and kinematic hardening parameters were simultaneously calibrated using the stress-strain curves obtained in smooth specimens of the experimental low cycle fatigue tests.

Elastic properties of 2024-T351 aluminium alloy and parameters for the Swift isotropic hardening law combined with the Armstrong–Frederick kinematic hardening law.

Material	E [GPa]	ν	Y ₀ [MPa]	K [MPa]	n	X _{sat} [MPa]	C _X
AA 2024-T351	72.26	0.29	288.96	389.00	0.056	111.84	138.80

The GTN parameters, for this alloy, were obtained from <u>existente</u> literature.

Parameters of the GTN model for the of 2024-T351 aluminium alloy.

Material	fo	q 1	q 2	q 3	f_N	$\boldsymbol{\varepsilon}_N$	<i>s</i> _{<i>N</i>}
AA2024-T351	0.007	1.5	1	2.25	0.032	2.25	2.25

Geometry and Discretization

- A compact tension specimen was used in this study. It was loaded, in Mode I, with Fmax=416.7 N and Fmin=4.17 N, resulting in a stress ratio, R=0.1.
- The mesh of the specimen considers three distinct zones: a very refined area near the crack tip, a transition zone, and a coarser mesh in the far side of the crack zone.
- 7287 2D plane strain finite elements and 7459 nodes were used.

*da/dN-*Δ*K* curves

- The results indicate that GTN induces a much better approximation to the experimental results.
- As expected, for higher ΔK values the GTN model provides higher FCG rates.

- However, for lower values of ΔK , the GTN model has a **protective behavior**, reducing the *da/dN*.
- This indicates an interrelation between mechanisms at the crack tip.

Plastic Strain at the crack tip

- The plastic strain accumulation was obtained, on the node containing the crack tip, for two distinct initial crack lengths (a₀):
 - $a_0=11.5 \text{ mm} (\Delta K = 7.86 \text{ MPa. m}^{-0.5})$ where the model considering GTN predicts a **slower** crack propagation rate.
 - $a_0=16.5.5 \text{ mm} (\Delta K = 10.36 \text{ MPa. m}^{-0.5})$ where the numerical model considering GTN predicts a faster da/dN.

IbCSI 2022 | March 2022

Plastic Strain at the crack tip

- For a₀=11.5 mm the critical plastic strain is achieved faster without GTN.
- For *a*₀=16.5 the effect of porosity is such that the critical plastic strain is achieved faster with GTN.
- The inversion on the behavior of the plastic strain accumulation evidences the effect of **additional mechanisms** at the crack tip.

Crack Closure

- For both initial crack sizes the model with GTN provides higher crack closure levels.
- By reducing the effective intensity of the stress state at the crack tip, it protects the material.
- Therefore, crack closure explains the da/dN results obtained for ao=11.5 mm.

Crack Closure

- Higher crack closure levels occur in the model with GTN because:
 - The higher plastic strain level stimulates Plastic Induced Crack Closure.
 - The inclusion of porosity increases the volume of the deformed material at the crack flanks, increasing the contact between them.
- For higher ΔK levels, crack closure is not able to fully protect the material. This way, **another mechanism** should rule.

Porosity

The evolution of the porosity, during a single propagation, was studied for both initial crack lengths.

Conclusions

- The GTN version, of the node release numeric model, provides a much better approximation to the experimental results.
- Higher crack closure levels are generated by higher plastic strain level and crack flank volume.
- Until a certain point crack closure **balances** the porosity effect then **porosity controls** FCG.
- FCG damage mechanisms should be analysed as a whole and not in isolation.

This research was funded by Portuguese Foundation for Science and Technology (FCT) under the project with reference PTDC/EME-EME/31657/2017 and by UIDB/00285/2020.

Thank you for your attention!