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Introduction

Advanced High Strength Steels (AHSS)

• Adopted in the automotive industry

✓ High strength and also good formability

✓ Lower thickness of the sheet steels

✓ Reduce the overall weight of the vehicles 

✓ Reduce fuel consumption

✓ Reduce emissions of greenhouse gases in the 

atmosphere

• Limited wide application in the automotive industry

✓ Challenges in formability

✓ Life of the forming tools 

✓ Springback behavior
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Introduction

Sheet metal forming process

• Sheet metal forming of AHSS 

✓ Large contact pressures on the tools

✓ Large frictional forces on the tools

✓ Parts susceptible to surface damage

• Thermal analysis of the sheet metal forming 

process

✓ Heat generated by plastic deformation

✓ Heat generated by frictional contact sliding

✓ Heat losses to the environment

✓ Heat losses to the forming tools
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Introduction

Frictional conditions at the interface 

• Different tribological tests have been developed

✓ Comprise typical forming operations

✓ Reproduce the tribological conditions of forming 

processes

• Main function of the draw-beads is to increase 

the material flow resistance around the periphery 

of the part

✓ Multiple bending-unbending

✓ Reverse tension-compression loading over the 

sheet thickness
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Objectives

Main objective of the study 

• Explore the potential of the draw-bead test to evaluate the heat generated by plastic deformation 

and friction

Adopted procedure

• Comparison between the uniaxial tensile test and the draw-bead test in terms of temperature 

evolution

• Experimental analysis of both tests, using an infrared thermal camera to measure the temperature

• Thermo-mechanical finite element analysis of both tests

• Dual phase steel DP780 with an initial thickness of 0.8 mm
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Experimental procedure

Uniaxial tensile test 

• Room temperature 

• Along the rolling direction 

• Constant crosshead speed (1.3 mm/s)

• Initial strain rate of 1.6×10–2 s–1

• One specimen surface was coated 

with matt black paint

✓ Ensuring an emissivity close to 1

✓ Improve the temperature field 

measurement with an infrared 

thermographic camera
Experimental 

apparatus

DIC

Specimen 

surfaces

IR
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Experimental procedure

Draw-bead test 

• All rollers have 21 mm of diameter, while the dimensions of the sheet strip are 450×25×0.8 mm

• Full penetration (p=21.8 mm) and the side clearance between rollers was c=1.55 mm

• The process is divided in 3 phases

✓ The strip is bended by the vertical movement of the middle roller

✓ The strip is pulled by a grip

✓ The deformed strip springback

c c

p 0.8 mm

Middle roller

Back roller Front roller

Supporting 

roller

122.5 mm

c

Grip



D.M. Neto (diogo.neto@dem.uc.pt) IDDRG 2020 | Korea

8
Experimental procedure

Draw-bead test 

• The equipment used was designed to enable the tests to be performed in a tensile test machine

✓ Allows changing the penetration depth, side clearance and the pulling speed of the grip

• The temperature field of the strip was measured with a thermographic infrared camera (FLIR 

A325), using an image resolution of 320×240 pixels matrix, at 60 frames/s

Grip

Strip

Rollers
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Numerical model

Transient thermo-mechanical analysis 

• Numerical simulation of both the uniaxial tensile test and the draw-bead tests using the in-house 

implicit finite element code DD3IMP

✓ Temperature independent elastoplastic behavior

✓ Staggered algorithm for the thermo-mechanical coupling

✓ Rollers are assumed rigid and isothermal

✓ Specimens are discretized with 3D hexahedral finite elements (3 layer in thickness direction of the strip)

✓ Strip discretized with 4167 elements (element size in the length direction is approximately 0.27 mm)

✓ Friction behavior between the strip and the rollers defined by the Coulomb friction law
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Numerical model

Thermal analysis 

• Differential equation that defines the thermal conduction within a solid

• Thermal properties of the dual phase steel DP780

Property Value

Mass density 7900 kg/m3

Specific heat capacity 450 J/(kg·K)

Thermal conductivity 40 W/(m·K)

Thermal power generated by plastic deformation

Thermal power generated by the friction forces



D.M. Neto (diogo.neto@dem.uc.pt) IDDRG 2020 | Korea

11
Numerical model

Thermal analysis 

• Thermal power generated by plastic deformation

✓ Fraction of plastic power converted

• Thermal power generated by the friction forces

Constant Taylor–Quinney factor (0.9)

Heat equally portioned between the two contacting bodies (strip and rollers),

thus η=0.5
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Numerical model

Thermal analysis 

• Free convection defined on the exterior surface

• Contact conductance defined on the exterior surface

✓ Interfacial heat transfer coefficient depends on the gap 

distance between the strip and the roller
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Numerical model

Mechanical analysis 

• Mechanical behavior of DP780 described by an elastoplastic constitutive model

✓ Isotropic elastic behavior described by the Hooke’s law (E=210 GPa and ν=0.30)

✓ Plastic behavior described by an isotropic work hardening law (Swift) and a yield criterion (Hill’48) 
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Results and discussion

Uniaxial tensile test 

• Comparison between experimental and 

numerical evolution of the temperature variation 

in the midpoint of the specimen

✓ Numerical prediction is in good agreement with 

the experimental measurement

✓ Approximately linear rising up to the onset of 

necking

✓ Considering the instant of onset of necking, the 

predicted and experimental temperature rise is 

about 25ºC and 30ºC, respectively

✓ The onset of necking is numerically predicted for 

a higher value of strain
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Results and discussion

Uniaxial tensile test 

• Distribution of the predicted temperature 

variation in the specimen for 3 different 

levels of engineering strain

✓ The maximum temperature arises in the 

center of the specimen

✓ The temperature rise in the specimen ends 

is negligible 

• Thus, the fraction of plastic power 

converted into heat (90%) and the heat 

transfer coefficient in free convection (5 

W/m2·K) were accurately selected
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Results and discussion

Uniaxial tensile test 
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Results and discussion

Draw-bead test 

• Experimental evolution of the pulling force for 

different values of pulling speed

✓ The steady state of the pulling force is quickly 

achieved after the initial sheet bending/unbending 

on the middle roller

✓ There is no evidence that the pulling force is 

influenced by the pulling speed (results dispersion 

corresponds to the level of uncertainty in the 

measurements)

✓ The force evolution is approximately constant 

during the pulling operation (about 2.5 kN)
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Results and discussion

Draw-bead test 

• Numerical evolution of the pulling force for 

different values of friction coefficient 

✓ The predicted pulling force is independent from the 

pulling speed since the constitutive model is not 

strain rate sensitive

✓ The predicted pulling force is about 1.5 kN in the 

steady state regime considering the frictionless 

condition (μ=0.0)

✓ The predicted pulling force is close to 2.5 kN for 

μ=0.12
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Results and discussion

Draw-bead test 

• Experimental profile of the strip after springback

✓ The curved region of the strip sheet was subjected 

to multiple bending-unbending induced by the 

draw-bead geometry

✓ A decrease of the pulling distance leads to a 

reduction of the springback angle

G
ri
p
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Results and discussion

Draw-bead test 

• Influence of the friction coefficient on the 

predicted profile of the strip after springback

✓ The effect of the friction coefficient on the 

springback is negligible

✓ The springback predicted numerically is 

significantly lower than the one measured 

experimentally

✓ The inclusion of the kinematic hardening and the 

degradation of elastic stiffness due to plastic 

straining can improve the springback prediction
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Results and discussion

Draw-bead test 

• Predicted temperature variation at 75 mm 

ahead the middle roller is presented for 3 different 

values of pulling speed 

✓ Increase the pulling speed leads to an increase 

of the temperature since the time available for the 

heat loss is lower

✓ The increase of the interfacial heat transfer 

coefficient leads to a decrease of the 

temperature rise

✓ The heat generated by plastic deformation and 

frictional contact occurs near the contact zones
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Results and discussion

Draw-bead test

• Influence of the grip velocity on the temperature distribution measured by the IR camera

v=15 mm/s v=60 mm/s
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Results and discussion

Draw-bead test 

• Comparison between experimental and numerical

temperature variation for hsup=15 kW/m2·K

✓ Despite the large value for the interfacial heat transfer 

coefficient, the temperature variation is overpredicted

by the numerical model

✓ Most of the heat generated comes from plastic 

deformation

✓ The temperature rise is significantly larger in the 

uniaxial tensile test than in the draw-bead test due to 

the heat lost by contact with the rollers
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Conclusions 

• Experimental and numerical thermo-mechanical analysis of tensile and draw-bead tests, using 

the DP780 steel with an initial thickness of 0.8 mm

• The predicted temperature rise in the uniaxial tensile test is in good agreement with the 

experimental measurement

• Comparing the numerical and experimental results from the draw-bead test, the pulling force is 

accurately predicted by the numerical model, but the springback is underestimated while the 

temperature variation is overestimated

• The predicted temperature variation is significantly affected by the adopted interfacial heat transfer 

coefficient

• The temperature rise is significantly larger in the uniaxial tensile test than in the draw-bead test 

due to the heat lost by contact with the rollers
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Thank you for watching!


