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Introduction

Additive Manufacturing

• Main advantages of the additive manufacturing processes: 

✓ Complex part geometry

✓ Variety of products and materials

✓ No time gap between design and prototyping
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Introduction

Powder-based Additive Manufacturing

• Direct Energy Deposition: coaxial nozzle to deliver powder to the focal point of a laser

• Selective Laser Melting: uses a roller to spread a thin layer of powder before melting the layer

Direct Energy Deposition (DED) Selective Laser Melting (SLM)
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Introduction

Selective Laser Melting 

• Example of SLM machine running 
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Introduction

Selective Laser Melting 

• Material phase transformation from powder to liquid, which then cools down to solidification
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Introduction

Selective Laser Melting 

• The main drawback is the high level of residual thermal stresses and large deformation 

generated by temperature gradients in a layer-by-layer melting process

Cracks due to residual stress during 

the manufacturing

Component deformed after removal 

from the building chamber
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Numerical Modeling

SLM modelling at different length- and time-scales 

❑ Micro-scale: modelling the interactions between the laser and particles

❑ Meso-scale: modelling sub-regions of the process, typically a number of scan vectors

❑ Macro-scale: modelling information for large regions or parts

Micro-scale Meso-scale Macro-scale
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Thermo-Mechanical Modeling 

Heat transfer modeling 

• Heat conduction within the solid/powder

• Heat generated by the laser beam

• Heat losses by convection/radiation

• Transient heat conduction within a solid material

Thermal 

conductivity
Mass 

density
Specific heat

Temperature

Time

Power generation per 

unit volume

Temperature dependent material 

properties are required
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Heat transfer modeling 

• Laser heat input modelled by a volumetric Gaussian heat source 

• Heat loss by natural convection between the

exposed powder bed surface and the environment

9
Thermo-Mechanical Modeling 

Laser 

power

Laser energy 

absorptivity

Laser spot size

Heat convection coefficient

Environment 

temperature

Heat flux at the 

surface boundary
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Thermo-Mechanical Modeling 

Mechanical modeling 

• Balance of linear momentum under quasi-static analysis: 

• Total strain increment: 

• Elastic strain:

• Plastic strain increment:

• Thermal strain:

Body forces

Stress tensor

Elastic strain increment

Plastic strain increment

Thermal strain increment

Elastic moduli

Associated flow rule
von Mises yield criteria Swift law

Volumetric thermal expansion coefficients
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Finite Element Model 

Numerical algorithms 

• In-house finite element code DD3IMP, originally developed for sheet metal forming simulation

• Thermo-mechanical coupling using a staggered algorithm

• Euler’s backward time integration for the transient heat conduction problem 

• Finite deformation is described by an updated Lagrangian scheme

• Fully implicit Newton–Raphson scheme for the mechanical solution

• Thermal and mechanical solutions using the same finite element mesh (8-node hexahedral 

elements) 
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Finite Element Model 

SLM process conditions 

• Multi-track in a single powder layer deposition, 

scanned over solidified layers

• Material of powder and substrate: Ti-6Al-4V

• Finite element mesh with 10 μm of edge size

• 2 different scanning strategies

Process parameter Value

Laser power [W] 83

Laser absorptivity 0.35

Laser spot radius [μm] 50

Scanning speed [mm/s] 600

Layer thickness [μm] 40

Hatching distance [μm] 120

Preheating temperature [ºC] 200
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Finite Element Model 

Thermo-physical material properties 

• Liquid with constant thermo-mechanical 

properties. The thermal conductivity coefficient 

was artificially increased to account for the 

convective heat transfer within the melt pool

• Weak mechanical strength of the powder and 

liquid

T [ºC] cp [J/kg·K] k [W/m·K] E [GPa] σ0 [MPa] K [MPa]

200 566 9.3 100 630 1500

650  646 15.3 55 300 770

761 665 17.0 20 110 350

872 685 18.5 10 55 120

1094 760 24.0 3 17 60

1650 820 27.0 0.05 1.5 10

T [ºC] cp [J/kg·K] k [W/m·K]

200 505 0.104

500  473 0.078

800 507 0.279

1000 610 0.813

1300 951 1.27

1650 1000 1.80

Property Powder Solid Liquid

ρ [kg/m3] 2600 4300 4300

cp [J/kg·K] - - 820

k [W/m·K] - - 42

α [×10–6 1/K] 1.2 12.0 0.0

E [GPa] 0.05 - 0.05

ν [-] 0.34 0.34 0.34

σ0 [MPa] 1.5 - 1.5

K [MPa] 10 - 10

n [-] 0.35 0.35 0.35
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Results and Discussion  

Temperature field 

Unidirectional scan strategy (including cooling time)
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Results and Discussion  

Temperature field 

Alternating scan strategy (including cooling time)
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Results and Discussion  

Temperature field 

• Predicted temperature field when the laser 

beam is over P2 (alternating scan strategy)

• Asymmetric temperature distribution 

around the melt pool due to the low thermal 

conductivity of the powder

• The geometry of the melt pool is 

approximately semielliptical

• Material phase status defined by the 

thermal history of each finite element, using 

the melting temperature as bound
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Results and Discussion  

Temperature field 

• The peak temperature (~3800ºC) is a 

singularity inside the melt pool region

• Temperature evolution in P2 is 

independent of the scanning 

strategy

• The cooling down rate is identical in all 

points using the alternating scan 

strategy

• Larger cooling down rate at the end of 

the scan vector using the 

unidirectional scan strategy
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Results and Discussion  

Residual stress (von Mises) 

Unidirectional scan strategy (including cooling time)
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Results and Discussion  

Residual stress (von Mises) 

Alternating scan strategy (including cooling time)
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Results and Discussion  

Residual stress (von Mises) 

• Distribution of the von Mises equivalent stress in the built component after 0.5 seconds of 

cooling time

σvM [MPa]

Alternating scan strategyUnidirectional scan strategy

Increase of the stress in the overlapping scan tracks

because the accumulated plastic strain must be

withdrawn when the material goes back to the liquid
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Results and Discussion  

Residual stress (von Mises) 

• Largest stress component arises in the 

direction parallel to the scanning direction

• The longitudinal residual stress 

increases considerably during the cooling

• Positive (tension) residual stresses in 

the solidified layers

• Negligible impact of the laser scan 

strategy on the residual stress field

PowderSolidified layers

Solid

Substrate

σxx [MPa]

Transverse cross-section corresponding to the half-length 

(unidirectional scan strategy)

Before cooling

After 0.5 seconds of cooling
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Conclusions 

• Finite element analysis of the selective laser melting using a coupled thermo-mechanical model 

at meso-scale (multi-track in a single powder layer deposition)

• Transient thermal analysis and quasi-static mechanical analysis using temperature dependent 

material properties

• Influence of two different laser scanning strategies on the predicted residual stress

• Shape and dimensions of the melt pool estimated based on the predicted temperature distribution

• The residual stresses in the finished part are a result of the non-uniform thermo-mechanical 

properties (powder-liquid-solid)

• The largest residual stress component arises in the direction parallel to the scanning, which is 

positive (tension) in the solidified layers

• Negligible effect of the laser scanning strategy on the predicted stress, particularly at the mid-

length of the scan vectors
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Thank you for watching!


