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Abstract. The hole expansion test has become popular since it allows to study the formability 

of metallic sheets, in particular the onset of necking in stretch flanging areas. The accurate 

prediction of strain localization and consequent fracture requires a proper description of the 

plastic behavior, particularly the anisotropic yield function. In the context of strain localization 

prediction, the yield criterion adopted plays an important role, particularly when using an 

associated flow rule, since the direction of the plastic strain tensor is modelled by the normal to 

the yield surface. In this work, the parameters of an advanced yield criterion are calibrated 

considering a wide set of experimental data, which includes results from uniaxial and biaxial 

tension tests. This enables establishing yield surfaces with similar shape in the plane defined by 

the stress components in the rolling and transverse directions and a null shear component in the 

same plane. However, their shape changes slightly when considering non-null values for that 

shear component. The numerical simulations of the hole expansion test demonstrate the impact 

of these slight differences on the thickness strain distribution and, consequently, in the instant 

and location of the necking.  

1. Introduction 

The stress and strain distribution around a circular hole submitted to biaxial tensions has been the 

subject of several studies due to its relevance for industrial applications, but also because it poses 

challenges to the numerical prediction of the instant and location of necking occurrence [1]. In this 

context, the analytical solution derived for the extension of a circular hole in an infinite sheet under 

balanced biaxial tension [2] can be considered an interesting approximation to the stretch flanging 

process. This solution highlights the variation in the stress state from uniaxial tension, at the hole free 

edge, to plane strain in the surrounding region, attaining the balanced biaxial tension far from the 

edge. Although the free edge is stretched under uniaxial tension, it can generally accommodate larger 

deformation than the ones observed in the uniaxial tensile test. This is related with the compatibility 

between the edge and the surrounding material, which delays the geometrical instability observed 

under uniaxial tension. Moreover, the crack initiation is not always observed at the hole edge, and its 

occurrence inside the specimen can be related with the strong variation of the stress state in the radial 

direction [1]. The metallic sheets commonly used in stamping operations present orthotropic behavior 

as a result of the rolling operations involved in their production. This means that each radial direction 

around the circular hole is submitted to a stress state varying from uniaxial tension until balanced 

biaxial tension, with different mechanical behavior depending on the orientation to the rolling 

direction (RD). This indicates that the material located in the flat zone of the hole expansion tests 
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covers a wide range of stress states located in the tension-tension quadrant of the yield surface. This 

contributes to the great sensitivity of the hole expansion test results from the constitutive model. 

Moreover, the experimental data commonly adopted to describe the material orthotropic behavior does 

not cover all this range of stress states, which can lead to some misinterpretations of the numerical 

results.  

The process conditions considered in this work are the ones established for the “Benchmark 1 – 

Hole expansion of a high strength steel sheet” [3]. These will be described in the following section 

along with the finite element adopted to perform the numerical simulations. The yield criterion 

proposed by Cazacu et al. [4] considering two linear transformations [5], commonly designated by 

(CPB06ex2), is briefly presented as well as the anisotropy parameter calibration procedure adopted. In 

Section 3 the results are presented and discussed, in terms of stress and strains distributions.  

 

2. Hole expansion test 

The material considered is a dual phase steel (DP980) sheet (1.2 mm thickness). The circular blank has 

a diameter of 215 mm and a central hole with a diameter of 30 mm, as shown in Figure 1, which also 

presents the forming tools geometry. The interface between the blank and the punch head was 

lubricated, while no lubricant was applied to the interfaces between the blank and the upper/lower die. 

Moreover, the periphery of the blank was clamped using a draw-bead (see detail in Figure 1) and a 

blank-holding force of approximately 800 kN was applied [3,6]. 

 

 

 

 
Figure 1. Schematic illustration of the tools 

geometry and specimen used in the hole 

expansion test. All dimensions are in millimeters. 

 Figure 2. True stress–plastic strain curves from 

the uniaxial tensile tests and Swift law fitted 

with the result for the RD. 

 

2.1. Finite element model 

The forming tools are assumed as rigid and modelled with Nagata patches [7], including the real draw-

bead geometry. Due to the previously described contact conditions, a null friction coefficient valued is 

adopted for the contact interface between the blank and the punch, while for the other contact zones a 

constant value of 0.15 was considered. A previous study indicates that the increase of the friction 

coefficient leads to a global decrease of the thickness strain in the flat region of the blank, which 

postpones the onset of necking but does not alter the location [8]. Only one-quarter model is modelled, 

allowing to perform the discretization of the blank with 64.800 hexahedral finite elements (3 layers 

through the thickness). All finite element simulations were performed with the in-house finite element 

code DD3IMP [9]. 

2.2. Mechanical Behavior 

The Benchmark committee provided the uniaxial tension data for the DP980 steel, including the r-

values and the yield stresses in-plane distribution, extracted from tests performed in every 15º to the 
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RD. Moreover, biaxial tension tests with cruciform specimens were performed to provide the 

directions of the plastic strain rates for the first quadrant of the yield loci, in the plane defined by the 

stress components in the RD and transverse direction (TD). The set of experimental data used in this 

work corresponds to the one reporter for a plastic work per unit volume of 0.01 [3].  

The elastic behavior is considered isotropic and described by the generalized Hooke law with an 

elastic modulus of 210 GPa and a Poisson ratio of 0.3. The isotropic hardening behavior is described 

by the Swift law. The parameters of this law were determines based on the fitting of the stress–strain 

curve obtained from the uniaxial tensile test along RD, as shown in Figure 2, which also presents the 

comparison with the results for the other tensile tests. The elastoplastic model considers an associated 

flow rule with yielding described by the criterion briefly presented in the following section. 

2.2.1. CPB06ex2 yield criterion. Cazacu et al. [4] proposed an isotropic yield criterion that allows the 

description of the strength-differential (SD) effect and extended it to orthotropy using the linear 

transformation of the deviatoric stress tensor σ , proposed by Barlat et al. [10], such that : s C σ , 

where C  is the constant 4th-order transformation tensor. To increase the number of anisotropy 

parameters in the formulation, instead of one linear transformation, two linear transformations were 

considered by Plunkett et al. [5], enabling an improved representation of the anisotropy yield surface. 

Thus, it also considers :  s C σ , where C  is the constant 4th-order transformation tensor associated 

with the second linear transformation. The orthotropic form of this yield criterion is defined as 
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, (1) 

where Y  is the yield stress, the exponent a  is a positive integer and k  and k  are the material 

parameters that enables the description of the SD effect. In this equation, 1s , 2s  and 3s  correspond to 

the eigenvalues components of the tensor s , while 1s , 2s  and 3s  are the ones associated with s . For 

3D stress conditions, assuming the Voigt notation, the constant transformation tensors involve each 

one 9 anisotropy coefficients and can be expressed in the principal axis of anisotropy as 
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B  is a constant defined such that Y  reduces to the tensile yield stress in the RD, and is given by 
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The convexity is guaranteed for 2a  ,  1,1k   and  1,1k   . The analysis of equation (2) would 

indicate a total of 18 anisotropy parameters. However, due to the homogeneity in stresses of the yield 



International Deep-Drawing Research Group (IDDRG 2020)

IOP Conf. Series: Materials Science and Engineering 967 (2020) 012085

IOP Publishing

doi:10.1088/1757-899X/967/1/012085

4

 
 
 
 
 
 

function given by equation (1) it is recommended to set 11 1.0C  . Therefore, for 3-D stress conditions 

this orthotropic yield criterion involves 17 anisotropy coefficients, the homogeneity parameter a, and 2 

parameters associated with strength differential effects in plastic flow ( k  and k ). 

2.2.2. Identification procedure for the anisotropy parameters. Taking into account that there are no 

experimental results available to characterize any possible SD effect, k  and k  are set equal to zero. 

Moreover, since it is difficult to measure the out-of-plane properties of the sheets, the parameters 44C , 

55C , 44C   and 55C   are assumed to be isotropic, i.e. equal to 1.0. Therefore, it is necessary to identify 

13 anisotropy parameters and the homogeneity parameter a. Taking into account the fact that the 

experimental database is constituted by 14 values extracted from uniaxial tensile tests and 9 values 

from the biaxial tension tests, the anisotropy parameters were determined using a downhill simplex 

method to minimize the following objective function: 
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where A  is the set of anisotropy parameters,   are the yield stresses and r  are the anisotropy 

coefficients, both obtained from uniaxial tensile tests, performed with the specimen oriented at an 

angle   with RD,   is the direction of the plastic strain rate in biaxial tension, for a loading direction 

 , and iw  are weighting coefficients. This procedure was performed considering different even 

integer values for the homogeneity parameter a, trying to assure a similar description of the trends of 

the experimental values, which required the use of different sets of weighting coefficients. 

Unfortunately, this disables any comparison of the values attained for the objective function. 

Figure 3 (a) presents the comparison between the experimental and predicted in-plane distribution 

of the r-values, showing that the maximum error occurs for the two lower values of a, at RD, attaining 

a maximum value of ~11% for a=4. For the other values of a, the maximum error is typically attained 

at TD and it is always lower than 3%. The comparison of the in-plane distribution of the yield stresses 

  normalized by the yield stress value for RD, 0 , is presented in Figure 3 (b). Also in this case the 

maximum error occurs for the two lower values of a, with a=2 overestimating the yield stress for TD 

(~9%) while for a=4 this value is underestimated by ~3%. The yield stress for TD is also 

underestimated for all the other values of a. The experimental and predicted directions of the plastic 

strain rate  , in function of the loading direction  , are shown in Figure 4 (a). As previously, the 

maximum error occurs for the two lower values of a, with a=2 showing a particular different trend 

between the equibiaxial tension and plane strain along TD (  50º;70º  ) with a maximum error of 

~23%. For a=4, the maximum error reduces to ~12%. For all the other values of a, the differences 

seem marginal. This is highlighted in Figure 4 (b) that shows the projection of the yield surfaces, 

given by equation (1), for all the different values of a, in the biaxial plane with stress components 

along RD and TD ( RD TD   plane), assuming a null component for the shear component in the same 

plane ( RDTD ). The stress components are also normalized with 0 , to facilitate the comparison. 

Moreover, the fourth quadrant of the yield surface (tension-compression) is also shown to highlight 

that the differences in the yield surface shape are also marginal, except for the sets of parameters 

obtained with the two lower values of a. The   values were optimized for the points represented 

with the diamonds. The points represented with the circles correspond to the yield stresses obtained 

from the uniaxial tensile tests. Therefore, the projection of the yield surfaces are also plotted assuming 

shear component RDTD  values equal to 0.25 0 , 0.4(3) 0  and 0.5 0 , to enable the comparison with 

the tests performed at 15º and 75º, 30º and 60º and 45º with RD, respectively. These yield surfaces are 

not presented for a=2, since they are homothetic in relation to that obtained for a null shear 
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components, i.e. all present the same evolution for the directions of the plastic strain rate  . For the 

sets of parameters obtained with other values of a, the fact that the projections obtained for equal 
RDTD  

values show slight differences indicates that the directions of the plastic strain rate   will also differ 

when the stress state varies from uniaxial tension until balanced biaxial tension, along each orientation 

in relation to RD. In fact, they will only be equal to the ones presented in Figure 4 for a=2. 

 

  
Figure 3. Experimental and predicted: (a) r  values and (b)   values. 

 

  
Figure 4. (a) Experimental and predicted   values and (b) normalized yield surfaces in the RD TD   

plane, with null values for all other stress components, for all values of a. Except for a=2, the yield 

surfaces are also shown for RDTD  equal to 0.25 0 , 0.4(3) 0  and 0.5 0 .  

 

3. Results and discussion 

The numerically predicted punch force evolution with its displacement is shown in Figure 5 (a), for 

the different sets of anisotropy parameters, showing that it mainly affects the instant the maximum 

force is attained. The comparison between the experimental [3] and numerical thickness strain 

evolutions was performed for a punch stroke of 15 mm. The results obtained along RD are shown in 

Figure 5 (b). For the direction at 45º with RD (labelled DD) the results are presented in Figure 6 (a). 

Finally, Figure 6 (b) plots the results along TD. The experimental results predict the highest decrease 

in thickness along the TD, followed by the RD and DD. Regarding the numerical prediction, except 
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for a=2, the DD is the one presenting the lowest decrease in thickness, while the RD presents the 

highest. In fact, for increasing values of a, the thickness strain along RD and TD tends to become 

more negative, while for the DD the trend is opposite. Therefore, although the trend for the 

distribution at 2 mm from the hole edge is globally well predicted (except for a=2), the variation is 

overestimated, as shown in Figure 7 (a). This seems to be related with the trend predicted for the radial 

displacement at 2 mm from the hole edge, as shown in Figure 7 (b), which is also clearly different for 

the set of parameters identified with the lower values of a. Note that the smaller numerical differences 

in the thickness strain distribution are observer for TD (see Figure 6 (b)), which mechanical behavior 

is dictated by the mechanical properties along the RD, due to the circumferential tensile stress 

component. Taking into account the similarities observed in section 2.2.2 between the yield surfaces 

for both RD and TD, particularly the ones obtained with a ≥ 6, this indicates that the compatibility 

with the surrounding material also affects the strain distributions.  

 

  
Figure 5. (a) Punch force evolution with its displacement and (b) Thickness strain distribution along 

the RD (stroke of 15 mm). 

 

  
Figure 6. Thickness strain distribution along the: (a) DD and (b) TD (stroke of 15 mm). 

 

Figure 8 (a) presents the distribution of the circumferential stress on the top surface of the blank, 

for a punch stroke of 15 mm. The radial stress component increases from the hole edge until the punch 

radius, leading to a similar behavior for the ratio between the radial and the circumferential stress 

components, as shown in Figure 8 (b). This ratio presents slight differences for each radial direction 

and evolves during the forming process. Since the Lode parameter attains the null value for a ratio of 

0.5, the plane strain state is not located in the immediate surrounding to the hole edge. Although not 

shown here, for each point located in the flat zone, the ratio between the radial and the circumferential 
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stress tends to decrease during the forming process. Thus, the location of the points submitted to plane 

strain tends to become closer to the hole edge. However, the strain localization occurs for points 

submitted to a stress state located between uniaxial tension and plane strain. 

 

  
Figure 7. Distribution of: (a) thickness strain and (a) radial displacement at 2 mm from the hole edge 

(stroke of 15 mm). 

 

 
Figure 8. Distribution of the circumferential stress and of the ratio between the radial and the 

circumferential stress components, on the top surface of the blank (stroke of 15 mm). 

 

 
Figure 9. Equivalent plastic strain distribution on the top surface of the blank, for a punch stroke of 15 

mm and close to the one corresponding to the maximum force, indicated between brackets. 

 

Figure 9 shows the equivalent plastic strain distribution for a punch displacement of 15 mm and 
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the maximum values are always observed in the hole edge. However, for the set of parameters 

identified with the two lower values of a, the distribution presents a different trend from the others, 

which results in the different location for the onset of necking. For the sets of parameters with a ≥ 6, 

the location is quite similar, although the stroke for which the maximum force is attained decreases 

with the increase of a. This is correlated with the differences observed for the thickness strain 

distribution for the stroke of 15 mm. The onset of necking was experimentally predicted for a stroke of 

20 mm along the RD, at a distance from the hole edge of about 7.5 mm [3], which is similar to the one 

observed in Figure 9 for the sets of parameters with a ≥ 6. 

 

4. Conclusions 

The analysis of the hole expansion test indicates that the flat zone is submitted to stress states from 

uniaxial tension at the hole free edge (circumferential direction), to balanced biaxial tension between 

the radial and the circumferential directions, close to the punch radius. The rotation of these stress 

tensors to the material frame, defined by the principal axis of anisotropy, shows that the flat zone of 

the hole expansion tests covers a wide range of stress states located in the tension-tension quadrant of 

the yield surface in the RD-TD plane, considering also different in-plane shear stress RDTD  

components. Therefore, the accurate prediction of the strain distributions and, consequently, the onset 

of necking requires an accurate description of the yield surface shape for all this range. 
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