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Abstract. The increasing use of advanced high-strength steels in sheet metal forming processes 

requires improved knowledge concerning the thermal and contact conditions. This study presents 

the experimental and numerical analysis of tensile and draw-bead tests, considering a dual phase 

steel DP780. The temperature evolution was measured in both tests using an infrared thermal 

camera. The presented finite element model considers both the heat generated by plastic 

deformation and friction, as well as the heat loss to the environment by free convention and the 

contact conductance. The temperature rise in the uniaxial tensile test is accurately predicted by 

the numerical model. Regarding the draw-bead test, the pulling force is accurately predicted but 

the temperature variation is overestimated, requiring further investigation.  

1. Introduction 

Sheet metal forming is a manufacturing process widely used for making shaped components, from soda 

cans to automotive car bodies. Finished products have good quality, are geometrically accurate and are 

ready to be used. However, sheet metal forming processes are complex and require expensive tooling, 

which is economically feasible only for mass production [1]. Advanced High Strength Steels (AHSS) 

are replacing conventional steels in the production of sheet components, particularly in the automotive 

industry [2], due to their excellent weight to strength ratio. The high specific strength guarantees the 

safety and weight reduction requirements, assuring savings in the fuel consumption. However, AHSS 

present high yield strength and are susceptible to surface damage like adhesion [3], since their 

deformation involves higher contact pressures than those required by conventional steels.  

The frictional conditions at the interface between the forming tools and the metal sheet may vary 

significantly during the deformation process. Besides, the frictional force depends on diverse parameters 

such as lubrication, normal pressure, surface roughness of the tool and sheet metal, sliding speed and 

temperature [4]. Thus, different tribological tests have been developed to model the friction conditions, 

which can be divided into two categories: (i) process tests and (ii) simulative tests [5]. Process tests 

comprise typical forming operations without changing the basic process kinematics, while simulative 

tests reproduce the tribological conditions of forming processes to study friction and/or lubrication. Most 

of these tests allow the indirect evaluation of the coefficient of friction based on the measurement of 
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other physical parameters, such as strains or forces [6]. The most frequently applied simulative tests for 

sheet metal forming can be categorized according to the conditions arising in each region of the forming 

tool. The conditions in the flange region are usually represented by the strip drawing test, the draw-bead 

test, and the drawing with tangential compression.  

The main function of the draw-beads is to increase the material flow resistance around the periphery 

of the part, changing the curvature of the metallic sheet passing the draw-bead. The sheet is subjected 

to multiple bending-unbending when passing through a draw-bead, generating a reverse tension-

compression loading over the sheet thickness. The draw-bead test was developed by Nine [7] to model 

the friction conditions in draw-beads used in sheet metal forming processes. The draw-bead test enables 

to separate the deformation resistance from the frictional resistance, comparing the values of the pulling 

and the clamping forces when pulling the strip over fixed and rotating rollers (no frictional resistance). 

Thus, when the wrap angle of the middle roller is 180º, the coefficient of friction can be calculated 

through the difference in the drawing force obtained for the rotating and the fixed rollers. 

This study explores the potential of using the draw-bead test to evaluate the mechanical and 

tribological behavior of an AHSS, including the heat generated by plastic deformation and friction. The 

equipment used was designed to enable the tests to be performed in a tensile test machine and it allows 

changing the draw-bead penetration depth and gap distance, as well as the pulling speed of the grip. The 

material considered is a dual phase steel DP780 steel with an initial thickness of 0.8 mm. The 

experimental tests were performed considering different values of pulling speed. The results include the 

evolution of the pulling force, as well as the specimen’s temperature, which was acquired using an 

infrared thermal camera. The same procedure was used to evaluate the temperature evolution in the 

uniaxial tensile test. The thermomechanical models of both tests were built, taking into account the heat 

generated by plastic deformation and friction, as well as the heat losses to the environment by free 

convention and due to the contact conductance with the forming tools.  

 

2. Experimental procedure  

The uniaxial tensile test was performed along the rolling direction according to ASTM E8M [8] at room 

temperature with constant crosshead speed (1.3 mm/s), resulting in an initial strain rate of 1.6×10–2 s–1. 

The specimen surface was coated with matt black paint (ensuring an emissivity close to 1) to improve 

the temperature field measurement with an infrared thermographic camera. 

The draw-bead test is essentially composed by four rollers (see Figure 1), which are placed to induce 

plastic deformation on a sheet strip. The process is divided in three phases: (i) the strip is bended by the 

middle roller; (ii) the strip is pulled by a grip and (iii) the deformed strip springback. All rollers have 21 

mm of diameter, while the dimensions of the sheet strip are 450×25×0.8 mm. Regarding the process 

parameters, the full penetration was considered (p=21.8 mm), the side clearance between rollers was 

c=1.55 mm and the total pulling displacement (at constant speed) was 200 mm. In order to maximize 

the heat generated by friction, the tests were carried out without lubrication. Figure 2 shows the 

equipment mounted in a tensile test apparatus. The evolution of the middle roller and grip forces was 

evaluated and the temperature field of the strip was measured with a thermographic infrared camera 

(FLIR A325), using an image resolution of 320×240 pixels matrix, at 60 frames/s. 

 

Figure 1. Scheme of the draw-bead test (initial position), composed by four rollers and the strip. The 

penetration is denoted by p, while the side clearance between rollers is represented by c. 
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Figure 2. Setup of the draw-bead test: (a) draw-bead equipment in a uniaxial tensile apparatus for 

large specimen tests and infrared thermal camera; (b) 3D representation of the draw-bead equipment. 

 

3. Numerical model 

The transient thermo-mechanical analysis of both tests (uniaxial tensile and draw-bead) was carried out 

with the in-house implicit finite element code DD3IMP [9], which has been continuously developed for 

sheet metal forming simulation. The forming tools are assumed rigid and isothermal [10], while the 

elastoplastic behavior of the dual phase steel DP780 is assumed as temperature independent. The 

thermo-mechanical coupling was performed through a staggered algorithm [11], which is assumed 

unidirectional in this study, i.e. the mechanical behavior is independent of the temperature distribution. 

The specimens are discretized with 3D linear hexahedral finite elements, using full integration in the 

thermal analysis and selective reduced integration in the mechanical problem. Three layers of finite 

elements are adopted in the thickness direction of the strip, to accurately capture the through-thickness 

gradients. The element size in the length direction is approximately 0.27 mm, i.e. the strip is discretized 

with 4167 elements. The friction between the strip and the rollers is defined by the Coulomb friction 

law, using a constant value for the friction coefficient, evaluated by fitting numerical and experimental 

force evolutions. 

3.1. Thermal analysis 

The differential equation that defines the thermal conduction within a solid is given by: 

 
2 2 2

p p f2 2 2
0,

T T T T
c k q Q

t x y z


    
− + + − − = 

    
 (1) 

where ρ is the mass density, cp is the specific heat capacity and k is the thermal conductivity. The thermal 

properties of the dual phase steel DP780 are: ρ=7900 Kg/m3, cp=450 J/(KgK) and k=50 W/(mK). The 

thermal power generated by plastic deformation is defined as the fraction of plastic power converted 

into heat, given by: 

 
p p

p ( : ),q w = = σ ε  (2) 

where β is the Taylor–Quinney factor, σ is the Cauchy stress tensor and 
p
ε  is the plastic strain rate 

tensor. In this study, β is assumed constant and equal to 0.9 [12]. The thermal power generated by the 

friction forces can be expressed as: 

 f t t( ),Q = t g  (3) 

where η defines the partition of heat dissipated to the strip, tt is the frictional force and tg  denotes the 

relative tangential slip velocity at the contact interface. In this study, the generated heat is equally 

Grip

Strip

Rollers

(a) (b) 
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partitioned between the two contacting bodies (strip and rollers), thus η= 0.5. The free convection and 

the contact conductance, both defined on the surface, are given by: 

 conv conv ( ),q h T T= −  (4) 

 c c roller sup n roller( ) exp ( )( ),q h T T h m g T T= − = − −  (5) 

where T∞ and Troller are the environment and the rollers temperature, respectively. The heat transfer 

coefficient in free convection is denoted by hconv, while the interfacial heat transfer coefficient hc depends 

on the gap distance between the strip and the roller [13]. Thus, the hsup is the upper threshold value (in 

contact) and m is a free parameter used to control the rate of decrease. Figure 3 presents the variation of 

the interfacial heat transfer coefficient with the gap distance, comparing three different values of hsup. 

These conditions are analyzed since the heat transfer coefficient is strongly dependent on the contact 

pressure and, consequently, on the contact distance, as reported in several studies [14]. The heat transfer 

coefficient in free convection is 5 W/m2·K.  

 

  

Figure 3. Variation of the interfacial heat transfer coefficient as a function of the normal distance to the 

roller surface, comparing three different values of upper threshold value. 

 

  

Figure 4. Mechanical behavior of the dual phase steel DP780, comparing the experimental data with 

the numerical model: (a) true stress–plastic strain curve from the uniaxial tensile test in the rolling 

direction; (b) evolution of the anisotropy coefficient (r-value) in the plane of the sheet. 
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3.2. Mechanical analysis 

The mechanical behavior of the dual phase steel DP780 is described by an elastoplastic constitutive 

model. The elastic behavior is assumed isotropic, which is described by the Hooke’s law, using 210 GPa 

for the Young’s modulus and 0.30 for the Poisson’s ratio. Regarding the plastic behavior, it is described 

by an isotropic work hardening law (Swift) and a yield criterion (Hill’48). Figure 4 presents the 

comparison between experimental and numerical results from uniaxial tensile tests. The parameters of 

the Swift law were calibrated using the stress–strain curve from the uniaxial tensile test with the 

specimen oriented along the rolling direction (see Figure 4 (a)). The anisotropy parameters of the Hill’48 

yield criterion were calibrated using the experimental r‐values, measured at every 45º from the rolling 

direction (see Figure 4 (b)).  

 

4. Results and discussion 

4.1. Uniaxial tensile test 

The transient thermal analysis of the uniaxial tensile test was performed to validate the proposed model, 

namely the thermal power generated by plastic deformation and the thermal properties of the DP780 

steel. The distribution of the predicted temperature variation in the specimen is presented in Figure 5 (a) 

for three different levels of engineering strain. The comparison between experimental and numerical 

evolution of the temperature variation in the midpoint of the specimen is presented in Figure 5 (b). The 

numerical prediction is in good agreement with the experimental measurement, presenting a linear rising 

up to the onset of necking. Considering the instant of onset of necking, the predicted and experimental 

temperature rise is about 25ºC and 30ºC, respectively. Although the onset of necking is numerically 

predicted for a higher value of strain, the rate of the temperature rise after necking is also accurately 

predicted (see Figure 5 (b)). Thus, the fraction of plastic power converted into heat (90%) and the heat 

transfer coefficient in free convection (5 W/m2·K) were accurately selected for this example [12].  

 

  

Figure 5. Temperature variation in the uniaxial tensile test considering 1.325 mm/s of crosshead 

speed: (a) distribution of the predicted temperature variation; (b) comparison between experimental 

and numerical temperature variation in the midpoint of the specimen.  

4.2. Draw-bead test 

The experimental tests were performed with different grades of AHSS steels to explore the potential of 

using the draw-bead test to evaluate the heat generated by plastic deformation and friction. However, 

due to some restrictions in setting the required laboratory conditions, the experiments were performed 

with a single sheet strip for each condition. The results are discussed here only for the DP780 considering 

all available data. The experimental evolution of the pulling force in the draw-bead test is presented in 

Figure 6 (a), comparing different values of pulling speed. After the initial sheet bending/unbending on 

the middle roller, the steady state of the pulling force is quickly achieved. There is no evidence that the 

pulling force is influenced by the pulling speed and even the 30 mm/s curve evolution lies in between 
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the 15 and 60 mm/s curves, which indicates that the results dispersion corresponds to the level of 

uncertainty in the measurements. Accordingly, it is assumed that the experimental force evolution is 

approximately constant during the pulling operation, presenting a value of about 2.5 kN. Also, since the 

constitutive model adopted to describe the mechanical behavior of the dual phase steel DP780 is not 

strain rate sensitive (neither temperature sensitive), the predicted pulling force is independent from the 

pulling speed. Additionally, the influence of the friction coefficient on the numerical pulling force is 

presented in Figure 6 (b). Considering the frictionless condition (μ=0.0), the predicted pulling force is 

about 1.5 kN in the steady state regime. On the other hand, the predicted pulling force is close to 2.5 kN 

for μ=0.12, as highlighted in Figure 6 (b). Comparing experimental and numerical pulling force 

evolutions, the friction coefficient between the strip and the rollers can be accurately described by a 

constant value of 0.12. 

 

  

Figure 6. Evolution of the experimental and numerical pulling force: (a) influence of the pulling speed 

on the experimental force; (b) influence of the friction coefficient on the numerical force.  

 

    

Figure 7. Profile of the strip after springback: (a) the experimental profile obtained for v=15 mm/s; (b) 

comparison between experimental and numerical profile. 

 

Since the strain rate sensitive of the dual phase steel DP780 is neglected in the numerical model, the 

predicted final geometry is independent of the pulling velocity and therefore only the experimental 

condition with a pulling speed v=15 mm/s is considered. The experimental profile of the strip after 

springback is presented in Figure 7 (a). The curved region of the strip sheet was subjected to multiple 

bending-unbending induced by the draw-bead geometry. Thus, a decrease of the pulling distance leads 

to a reduction of the springback. Hence, the accurate assessment of the springback requires the 

distribution of the turning angle along the section profile [15]. The influence of the friction coefficient 

on the predicted profile of the strip after springback is presented in Figure 7 (b). Despite the large 
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influence of the friction coefficient on the predicted pulling force (see Figure 6 (b)), the effect of the 

friction coefficient on the springback is negligible. Moreover, the springback predicted numerically is 

significantly lower than the one measured experimentally. This difference can be related with the 

adoption of an isotropic hardening law. The inclusion of the kinematic hardening can improve the 

springback prediction since the Bauschinger effect (reduction of the yield stress under reverse loading) 

is more evident in high strength steels, as well as the pre-strain dependency of the elastic modulus [16]. 

Indeed, the degradation of elastic stiffness due to plastic straining presents a strong impact on the 

predicted springback [17]. This may be the main reason why the springback is underestimated. 

The thermal analysis of the draw-bead test is presented in Figure 8. The temperature variation at 75 

mm ahead the middle roller is presented for three different values of pulling speed. The increase of the 

pulling speed leads to an increase of the temperature since the time available for the heat loss is lower. 

Considering the uniaxial tensile test, the influence of the interfacial heat transfer coefficient on the 

predicted temperature is negligible, since the temperature rise occurs far from the contact zone [12]. 

Nevertheless, in the draw-bead test, the heat generated by plastic deformation and frictional contact 

occurs near the contact zone. Thus, three different values of hsup (see Figure 3) were adopted in the draw-

bead simulation. The increase of the interfacial heat transfer coefficient leads to a decrease of the 

temperature rise, as shown in Figure 8 (a), for the lower values considered. The comparison between 

experimental and numerical temperature variation is presented in Figure 8 (b), considering hsup =15 

kW/m2·K. Despite the large value for the interfacial heat transfer coefficient, the temperature variation 

is overpredicted by the numerical model, i.e. the numerical prediction of the temperature variation is at 

least twice the experimental value. The temperature rise is significantly larger in the uniaxial tensile test 

(Figure 5 (b)) than in the draw-bead test due to the heat lost by contact with the rollers. The frictionless 

simulation allows to conclude that most of the heat generated comes from plastic deformation. 
 

  

Figure 8. Temperature variation in the draw-bead test ahead the front roller considering different 

values of pulling speed: (a) influence of the interfacial heat transfer coefficient on the predicted 

temperature; (b) comparison between experimental and numerical (hsup=15 kW/m2·K) results. 

5. Conclusions 

This study presents the experimental and numerical analysis of tensile and draw-bead tests, using the 

DP780 steel with an initial thickness of 0.8 mm. In addition to the mechanical and tribological behaviour 

of this steel, the heat generated by plastic deformation and/or friction is evaluated experimentally and 

numerically. The predicted temperature rise in the uniaxial tensile test is in good agreement with the 

experimental measurement. Comparing the numerical and experimental results from the draw-bead test, 

the pulling force is accurately predicted by the numerical model, but the springback is underestimated 

while the temperature variation is overestimated. The temperature rise is predominantly influenced by 

the pulling speed, due to the time available for the occurrence of heat losses to the environment by free 

0

2

4

6

8

10

12

14

16

18

0 25 50 75 100 125 150 175 200

T
em

p
er

at
u
re

 v
ar

ia
ti

o
n
 [

ºC
]

Grip displacement [mm]

v=15 mm/s
v=30 mm/s
v=60 mm/s

0

2

4

6

8

10

12

14

16

18

0 25 50 75 100 125 150 175 200

T
em

p
er

at
u
re

 v
ar

ia
ti

o
n
 [

ºC
]

Grip displacement [mm]

v=15 mm/s
v=30 mm/s
v=60 mm/s

hsup=3kW/m2·K

hsup=7kW/m2·K

0

1

2

3

4

5

6

7

8

9

10

0 25 50 75 100 125 150 175 200

T
em

p
er

at
u

re
 v

ar
ia

ti
o

n
 [

ºC
]

Grip displacement [mm]

v=15 mm/s v=15 mm/s

v=30 mm/s v=30 mm/s

v=60 mm/s v=60 mm/s

Experimental Numerical

(a) (b) 



International Deep-Drawing Research Group (IDDRG 2020)

IOP Conf. Series: Materials Science and Engineering 967 (2020) 012086

IOP Publishing

doi:10.1088/1757-899X/967/1/012086

8

 

 

 

 

 

 

convention and the contact conductance with the rollers. Thus, the predicted temperature variation is 

significantly affected by the adopted interfacial heat transfer coefficient. 
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