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  Abstract 

 

Abstract 

Fatigue is one of the most prominent mechanisms of failure. Thus, its 

evaluation is of prime order in engineering components subjected to cyclic loads. The 

fatigue crack growth process is usually accessed through the stress intensity factor, ΔK. In 

accordance, the fatigue crack growth rate is, typically, defined by the da/dN- ΔK curves. 

Despite the wide use of this approach, it has some well-known limitations. Moreover, the 

fatigue process is an irreversible mechanism while the ΔK parameter is of elastic nature.  

The cumulative plastic strain at the crack tip has provided results in good 

agreement with the experimental observations, appearing as an alternative to the more 

traditional ΔK approach. Also, it allows understanding the crack tip phenomena leading to 

FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage 

accumulation, which can be evaluated with a damage model, such as Gurson-Tvergaard-

Needleman (GTN).  

In this study a numerical model that uses the cyclic plastic strain at the crack 

tip to predict da/dN was coupled with the GTN damage model. The crack propagation 

process occurs, by node release, when the cumulative plastic strain reaches a critical value. 

The GTN model is used to account for the material degradation due to the growth of 

micro-voids process, which affects fatigue crack growth. Crack propagation predictions, of 

the 2024-T351 aluminium alloy, with GTN are compared with the ones obtained without 

the ductile fracture model. The accuracy of both models is evaluated through the 

comparison with experimental fatigue test results from CT specimens. The influence of the 

GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack 

growth rate is, also, accessed.  

 

 

Keywords: Fatigue crack growth, Crack tip plastic deformation, GTN 
damage model, Sensitivity analysis 
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Resumo 

A fadiga dos materiais é um dos mais principais mecanismos de falha em 

componentes mecânicos. Assim, a sua avaliação é essencial nos componentes de 

engenharia sujeitos a cargas cíclicas. O processo de propagação de fendas por fadiga é 

normalmente avaliado através da gama do factor de intensidade de tensão, ΔK. Deste 

modo, a velocidade de propagação de uma fenda é tipicamente definida através das curvas 

da/dN-ΔK. Apesar da ampla utilização desta abordagem, estão-lhe associadas várias 

limitações. Além disso, o processo de fadiga é um mecanismo irreversível enquanto o 

parâmetro ΔK é de natureza elástica.  

A utilização da deformação plástica acumulada na ponta da fenda provou 

fornecer resultados em concordância com as observações experimentais, aparecendo como 

uma alternativa à abordagem mais tradicional baseada no ΔK. Além disso, permite 

compreender o fenómeno da ponta da fenda que conduz à propagação de fendas por fadiga. 

A deformação plástica conduz inevitavelmente à ocorrência de micro-vazios e acumulação 

de dano, que podem ser avaliados com um modelo de dano, como por exemplo o modelo 

Gurson-Tvergaard-Needleman (GTN).  

Neste estudo, o modelo numérico que utiliza a deformação plástica cíclica na 

extremidade da fenda para prever da/dN foi acoplado com o modelo de dano GTN. O 

processo de propagação da fenda ocorre, por libertação de nós, quando a deformação 

plástica cumulativa atinge um valor crítico. O modelo GTN é utilizado para contabilizar a 

degradação da resistência mecânica do material devido aos processos de crescimento de 

micro-vazios, que afecta o crescimento da fenda de fadiga. Neste trabalho são feitas 

previsões de propagação de fendas na liga de alumínio 2024-T351, utilizando o modelo 

GTN, as quais são comparadas com as obtidas sem o modelo de fratura dúctil. A precisão 

de ambos os modelos é avaliada através da comparação com resultados de ensaios 

experimentais em provetes C(T). É também avaliada a influência dos parâmetros do 

modelo GTN na velocidade de propagação de fendas por fadiga, os quais estão 

relacionados com o crescimento e nucleação dos micro-vazios. 

 

Palavras-chave: Propagação de fendas por fadiga, Deformação 
plástica cumulativa na extremidade da fenda, 
Modelo de dano GTN, Análise de sensibilidade 
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1. INTRODUCTION 

Fatigue is, terminologically, the failure of a component or structure under a 

cyclic, either constant or varying, load which never reaches a sufficient level to cause 

failure on a static application.  Being such a prevalent failure mechanism, design against 

fatigue is fundamental in most mechanical engineering projects, particularly in the case of 

the automotive, aeronautical and nuclear industries.  

The damage tolerance approach is widespread in industry. It allows the 

existence of small cracks, whose presence must be evaluated through periodic inspection. 

This strategy is of particularly interest in areas where the occurrence of defects, which may 

evolve into cracks, is inevitable, such is the case of welding, casting [1] and addictive 

manufacturing [2]. Once the defects are detected, its evolution must be predicted. This 

process is influenced by several conditions, namely: the geometry of the structure or 

component, the configuration of the initial crack, loading history and mechanical 

behaviour of the materials [3].    

The fatigue crack growth (FCG) process is widely evaluated using the stress 

intensity factor range (ΔK). This concept is interesting because it is related to the stress and 

strain fields occurring near the crack tip. Moreover, the fatigue crack growth rate (FCGR) 

is usually accessed through the da/dN-ΔK curves, which are correlated in several 

propagation laws [4]–[6]. Despite the importance of ΔK, it has some well-known 

limitations in the study of stress ratio effects, short cracks and load history effects 

associated with variable amplitude loading [7]. Other methodologies appeared in a 

tentative to overcome this limitations, such as the crack closure concept, T-stress, CJP 

model, integral J, energy dissipated at the crack tip and Crack Tip Opening Displacement 

(CTOD) [8].  

The study of the non-linear crack tip phenomena emerged as an alternative to 

the study of FCGR based on ΔK. Different non-linear parameters have been used, namely 

the range of cyclic plastic strain [9], the size of the reverse plastic zone [10] and the total 

plastic dissipation per cycle [11]. The plastic Crack Tip Openening Displacement (CTODp) 

has also been used to predict FCG [12–15]. This way, the plastic deformation at the crack 
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tip can be understood as the main driving force behind FCG [16]. In this line of work, 

models regarding the cumulative plastic strain prove to provide results in reasonable 

agreement with the experimental trends [17]–[19]. However, the comparison with 

experimental results showed that the effect of stress ratio was lower than obtained 

experimentally, particularly for Ti-6Al-4V alloy [20]. Besides, the slopes of experimental 

da/dN-K curves were found to be higher than the slopes predicted numerically for the Ti-

6Al-4V alloy [21] and the 2024-T351 aluminium alloy [17]. In other words, an anti-

clockwise rotation of predicted da/dN-K curve (Paris regime) is needed to improve the 

fitting to experimental results. These difficulties indicated that cyclic plastic deformation 

does not characterize completely the crack tip damage, and that other mechanisms are 

needed. 

Under the presence of high levels of plastic strain, the processes of growth, 

nucleation and coalescence of micro voids are of great importance, due to its influence on 

the behaviour of the material. The quantification of this influence is made through an entity 

called damage [22]. The damage accumulation mechanism is usually modelled with the so 

called damage models, being GTN (Gurson-Needleman-Tvergaard) one of the most 

famous [23]. Damage accumulation is not only accounted for failure criteria [24] but also 

for the decrease in material stiffness, strength and a reduction of the remaining ductility 

[25]. Thus, the implementation of the GTN model is expected to influence da/dN, 

especially for higher ΔK levels, and to contribute to the true understanding of the FCG 

process. 

This study aims to access the influence of the introduction of the GTN damage 

model on the FCG predicted by a node release numerical model. The cyclic plastic strain at 

the crack tip is considered the FCG driving force whereby the damage accumulation 

accounts for the material loss of strength. The relation between porosity, plastic strain and 

stress-triaxiality is another object of this study, defining another step towards 

understanding the mechanisms behind FCG. Finally, the influence of each GTN 

parameters on FCGR is accessed to understand how the processes of growth and 

nucleation of micro-voids influence the FCG.  
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2. LITERATURE REVIEW 

2.1. Fatigue Phenomenon 

In structural mechanics, where components are subjected to monotonic or static 

loadings, the mechanical design is achieved by specifying the maximum stress, or strain, 

sustainable by the components. However, in dynamic loadings the previously referred 

criteria are no longer appropriate. In the presence of cyclic loads, there is a progressive 

deterioration of the materials leading to failure for stresses, sometimes, well below the 

yielding stress. Moreover, fatigue is known to be the cause of 80% to 90% of the failures 

that occur in mechanical components operating at ambient temperature [26].  

Fatigue is caused by the nucleation of a crack which, by means of cyclic 

stresses, propagates in the component. When the resistant area – part of the cross-section 

that is not cracked - is unable to support the applied load, fracture occurs suddenly. Fatigue 

phenomenon can therefore be divided in the following 4 steps: 

• Crack initiation 

• Microscopic growth 

• Crack propagation 

• Final fracture 

2.2. Linear Elastic Fracture Mechanics  

Fracture mechanics analyses materials containing one or more cracks to predict 

the conditions when failure is likely to occur [27]. Its development began in the early 50’s. 

Later it was applied to fatigue phenomenon with the purpose of predicting crack 

propagation in materials and develop damage tolerant design strategies.  

The first steps on the Linear Elastic Fracture Mechanics - LEFM - field were 

taken by Griffith [28]. Based on Continuum Mechanics principles, he stated that a crack 

only propagates if it results in a decrease on the total energy of the system. However, this 

energy balance only considers the equilibrium between two terms: the reduction on the 

elastic strain energy due to the presence of a crack on the component; and the surface 
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energy released upon the formation of the crack flanks. This way, Griffith’s theory is only 

valid on purely elastic bodies, where no plastic strain occurs at the crack tip.  

Irwin [29] suggested that most of the energy dissipated, during crack 

propagation, is related to the plastic strain occurring near the crack tip. However, if the 

plastic strains near the crack tip affect the stress field only within small distances, in 

comparison to the crack length, the influence of these plastic strains will be also small. 

This way, the stress field near the crack tip could be predicted by linear elasticity theory 

and described through the stress intensity factor, K. [30] 

 𝐾 = 𝑌𝜎√𝜋𝑎, (2.1) 

where 𝑌 is a geometric factor, 𝜎 is the nominal stress applied and 𝑎 the crack length. 

The stress intensity factor controls the stress and strains field near the crack tip. 

This way, for two distinct cracks sharing the same K, similar stresses and strains can be 

found at the vicinity of the crack tip [31]. Also, it is supposed to control the FCG [32]. 

In cyclic loading conditions, varying between the maximum and minimum 

stress intensity factors - Kmax and Kmin respectively-, the stress intensity factor range, Δ𝐾, 

can be defined as: 

 Δ𝐾 = 𝐾max − 𝐾min, (2.2) 

Applying a stress intensity factor range to a material, for a certain number of 

cycles, drives a certain crack to grow in length. The increase in length of the crack can be 

related to the applied cycles through the crack growth rate, da dN⁄ -ΔK curves, as shown in 

Figure 2.1 [33]. Typically, three regions can be distinguished: 

• Threshold Region: below the fatigue threshold, 𝛥𝐾𝑡ℎ, no propagation 

occurs. Once this value is surpassed there is a strong increase in da dN⁄  with 

ΔK. 

• Paris-Erdogan Regime: Paris-Erdogan law defines the linear relation, in log-

log scale, between da dN⁄  and ΔK [5].   

 
𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾)𝑚, (2.3) 

 𝐶 and 𝑚 are material constants that depend on the environmental conditions 

and stress ratio. 
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• Accelerated Region: When 𝐾max approaches the fracture toughness, 𝐾c, 

there is a sudden increase in da dN⁄  until fracture occurs. 𝐾c is a material 

parameter that depends on the loading conditions or crack length. 

 

 

Figure 2.1 Fatigue crack growth curve. Log-log scale. Adapted from [33].  

LEFM assumes the stress near the crack tip to be purely elastic. However, due 

to the singularity occurring at the crack tip, theoretically the stress tends to be infinitely 

large. This way, even if the remote stress applied to the body is small, at the vicinity of the 

crack tip, there should be a plastic region. This region is not taken in account by LEFM. 

So, the error induced, by underestimating it, is only slight when the dimensions of the 

plastic region are small in comparison to the remaining dimensions of the body - Small 

Scale Yielding (SSY) [34].  

2.2.1. Crack Closure effect on LEFM  

As referred, the da dN⁄ -ΔK approach is widely used. Nevertheless, there are 

several problems regarding this approach, namely: the inability to predict the influence of 

stress ratio and load history on da/dN-K relations; the odd behaviour observed for short 

cracks; the dimensional problems of da/dN-K relations and the validity limited to LEFM. 

In fact, FCG is linked to nonlinear and irreversible mechanisms happening at the crack tip, 

while K is an elastic parameter [35]. 

Crack closure was one of the most important concepts that emerged from the 

attempt to broaden the applicability of the K approach. Christensen [36] proposed that the 

fracture surface interaction outcomes in a decrease on the stress intensity factor range at 
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the crack tip. According to Elber [37][38] as the crack propagates, a residual plastic wake 

is formed. The deformed material acts as a wedge behind the crack tip and the contact of 

fracture surfaces is forced by the elastically deformed material. Even in tensile load a crack 

can be closed due to crack closure effect. Moreover, the crack only propagates on the 

portion of the cycle during which the crack is open, explaining how stresses lower than the 

crack opening stress are insufficient to propagate the crack. This fact led to the 

introduction of the effective stress intensity factor, Δ𝐾eff, given by: 

 Δ𝐾eff = 𝐾max − 𝐾open, (2.4) 

where 𝐾open represents the stress intensity factor below which the crack remains closed. 

The da/dN-Keff approach proposes the replacement, in Paris Law, of K by Keff. 

 
𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾eff)

𝑚. (2.5) 

Crack closure is able to explain the influence of mean stress in both regimes I 

and II of crack propagation [39], the transient crack growth behaviour following overloads 

[40], the growth rate of short cracks [41], and the effect of thickness on fatigue crack 

growth [42]. The causes of crack closure have been attributed to PICC (plasticity induced 

crack closure), OICC (oxide-induced crack closure) and RICC (roughness-induced crack 

closure)  [43]. The OICC greatly depends on the pair material-environment. According to 

Suresh [44] the formation of oxide films, that represents a relevant mechanism of closure, 

benefits from the low crack growth rates that occur near threshold. Gray [45] shown that 

microstructures that form rougher fracture surfaces reduce the Keff at the crack tip, due to 

crack tip impingement. Once again, RICC is more important near fatigue threshold and 

appears to be absent at higher stress ratios (R). Therefore, both mechanisms are more 

relevant in Regime I [42], where the crack opening is relatively small. On the other hand, 

PICC seems to be present in both Regime I and II, being the most important mechanism in 

Regime II [39]. The residual plastic deformation, which leads to compressive stresses 

behind the crack tip, raises the crack opening load on subsequent crack growths.  

2.3. Elasto-Plastic Fracture Mechanics 

In many materials it is theoretically impossible to characterize the FCG process 

based on LEFM. This is true whenever the ductility of the material induces plastic regions, 

at the vicinity of the crack tip, large enough to breach the SSY condition. Moreover, at this 
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condition - Large Scale Yielding (LSY) - four different zones can be identified ahead of a 

fatigue crack tip, as illustrated in Figure 2.2 [46].  

 

Figure 2.2. Schematic diagram of crack tip zones. 

Regions I and II represent the elastic zone, which is far ahead of crack tip; the 

material is deformed in purely elastic regime. Region II is distinguished from the former 

because, here, the magnitude of the stress and strain fields is controlled by K. Region III 

represents the monotonic plastic zone. Monotonic plastic deformation occurs during 

loading and after that, elastic loading-unloading takes place. Region IV, close to fatigue 

crack-tip, embodies the reverse/cyclic plastic zone [47]. Reverse plastic deformation 

occurs during unloading where the material, very near to the crack tip, suffers compressive 

stresses [48].  

The clearly non-linear behaviour at the crack-tip prompted the search for 

alternative fracture-mechanics models which introduced new non-linear parameters.  

2.3.1. Crack Tip Opening Displacement 

Crack Tip Opening Displacement, CTOD, was firstly proposed by Wells [49] 

as an assess of the fracture toughness of the material through its capacity to deform 

plastically prior to fracture. This parameter is a measure of the displacement of the crack 

flanks due to the blunting suffered by an initially sharp crack.  

Crack tip plastic blunting may explain the striation formation process which is 

verified at the fatigue crack propagation in Paris-Erdogan regime, as proposed by Laird 

[50]. As both phenomena are related, the CTOD concept allows the prediction of fatigue 
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striations spacing and, therefore, the crack growth rate [51]. Moreover, Nicholls [52] 

proposed a polynomial relation between CTOD and crack growth rate: 

 
𝑑𝑎

𝑑𝑁
= 𝑏 (𝐶𝑇𝑂𝐷)

1

𝑑, (2.6) 

where  𝑏 and d assume the same roles of the Paris-Erdogan coefficients. 

An alternative approach considers the plastic deformation at the crack tip to be 

the driving force behind fatigue crack growth. The plastic CTOD, δp, as shown by Antunes 

[53], is a measure of the level of plastic deformation at the crack tip. Encouraging results 

were attained when replacing ΔK by the plastic CTOD range, Δδp, in da/dN curves.  

A da/dN-Δδp model was developed for several materials [14], [35],[54]. In that 

study, the fatigue crack growth rate was obtained experimentally in C(T) and M(T) 

specimens. Then, the experimental tests were replicated numerically to predict Δδp, which 

was computed at the first node behind the crack tip. The numerical models replicated the 

geometry of the specimen and crack, the applied load range, and the material behaviour. 

The da/dN- Δδp model was used to predict the effect of stress state, stress ratio and variable 

amplitude loading. The trends obtained were all according to literature results [54]. Note 

that this is a multi-point approach because several experimental values of da/dN are 

considered to calibrate the model. 

The adopted crack propagation scheme is based on a node released method. 

Crack growth was simulated by a successive debonding at minimum load of both current 

crack front nodes. Each crack increment corresponded to one finite element and two or five 

load cycles were applied between increments. Node release methods were firstly proposed 

by Newman [55] and are a very popular technique in Finite Element Method (FEM) to 

model crack propagation. However, as a constant FCG is assumed it does not consider the 

physics behind the process since the crack extension per cycle should depend on crack tip 

strain [18]. In fact, the crack propagation is only done to stabilize crack tip plastic 

deformation and crack closure level. 

2.3.2. Crack Tip Plastic Strain 

Pokluda [56] stated that the crack driving force in fatigue is directly related to 

the range of cyclic plastic strain. Thus, a model similar to the one presented in the previous 

section was developed based on the cumulative plastic strain [17]. However, instead of 
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considering an arbitrary number of cycles between each propagation, the crack tip node is 

released when the accumulated plastic strain reaches a critical value. Nevertheless, the 

comparison and consequent release is only performed when the load is at minimum to 

avoid eventual convergence problems related to crack propagation at maximum loads [57]. 

Due to the singularity at the crack tip, the equivalent plastic strain is defined as the average 

measured at the Gauss points immediately behind and ahead of the crack tip node. The 

critical plastic strain is supposed to be a material property, which is calibrated using only a 

single experimental value of da/dN. 

The discussed method may follow two distinctive approaches. Incremental 

Plastic Strain (IPS) considers the accumulated plastic strain to be set to zero after each 

crack node release. This means that the plastic deformation that occurred previously at the 

Gauss point surrounding the crack tip only affects the material hardening. IPS approach 

assumes the FCG to be due to the irreversible strain acting at the crack tip. Alternatively, 

Total Plastic Strain (TPS) approach considers the cumulative sum of all the plastic strain 

developed at the Gauss points, even when they do not contain the crack tip. Thus, the 

propagation is assumed to be due to the damage accumulation induced by cyclic plastic 

strain [21]. 

2.4. Other mechanisms affecting FCG 

Cyclic plastic deformation is generally accepted as the most important crack tip 

mechanism responsible for FCG [16]. However, environmental damage is supposed to 

have a significant contribution particularly near Δ𝐾th [58]. At high load levels, brittle 

failure and growth and coalescence of micro voids are possible mechanisms since they 

greatly depend on maximum load.  

Borges [17] suggested that the difference between experimental and numerical 

results, obtained with the models based on cumulative plastic strain, must be linked to 

mechanisms controlled by 𝐾max. Additionally, Pippan [59] found a strong relation between 

𝐾max and the fatigue propagation rate of brittle materials. According to Newman [60], the 

fatigue crack growth rate, of an Aluminium alloy, near the fatigue threshold was 

exacerbated by increased levels of 𝐾max. Despite the proven influence of 𝐾max in FCG, the 

numerical results indicate that 𝐾max has no effect on cyclic plastic deformation at the crack 
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tip [61]. Therefore, alternative damage mechanisms are required to explain it. Possible 

mechanisms, driven by 𝐾max, are the growth and coalescence of microvoids, diffusion-

based mechanisms and brittle failure. Accordingly, this work will be focused on evaluate 

the effect of the growth and coalescence of micro voids on the FCG, a mechanism 

associated with ductile fracture. 

2.5. Physical mechanisms of the ductile fracture 

Ductile fracture is a mechanism that involves three stages: nucleation, growth 

and coalescence of cavities [62]. Voids are defects innate to the materials. However, the 

amount of voids tend to increase when high levels of plastic deformation occur. In this 

case, void initiation arise by fracture of non-metallic inclusions and by the decohesion of 

the inclusion-matrix interface [63], [64]. Under certain conditions voids will subsequently 

grow.  

McClintock states that stress and strain histories importantly affect the size, 

shape and distribution of voids in the materials [65]. Moreover, the stress state is of major 

importance in ductile fracture [66]. The deviatoric component is primarily responsible for 

void nucleation; while the hydrostatic stress dictates the void growth and coalescence steps 

[67]. Hence, the stress triaxiality dictates which are the active mechanisms behind void 

growth. Under low stress triaxiality, voids suffer changes in shape without affecting the 

void volume fraction. Therefore, fracture is mainly due to shape changing void growth 

[68]. Alternatively, on the presence of high stress triaxiality, as it occurs at a fatigue crack 

tip [69], voids dilatate without changing their shape [70]. Increasing the loading, voids 

become so large that start interacting with each other, occurring coalescence.  

In the coalescence stage the growing voids link together leading to the 

formation (or propagation) of macroscopic cracks and, ultimately, the fracture of the 

material [66].  Once again, the active phenomena behind void coalescence are affected by 

the stress triaxiality. In Void impingement mechanism, voids simply touch and coalesce in 

a larger cavity. Internal necking occurs for highly triaxial stress states and consists in the 

neck down of the matrix ligaments between two voids [71].  Finally, void sheet is the main 

mechanism at low stress triaxialities. Second generation voids are nucleated at high 

concentration shear bands due to strain localization between larger cavities. Impingement 
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occurs locally by fracturing the 2D surface defined by the strain localization region where 

newer voids have been nucleated [66]. This mechanism is not exclusive to shear loading. 

The progressive deterioration of the material due to the mechanisms of 

nucleation, growth, and coalescence of voids is generally named damage [72]. The 

alternative FCG mechanisms, referred in the previous section are highly connected to the 

accumulation of damage. Thus, to assess the importance of these mechanisms, it is crucial 

to consider a Damage Model in the numerical analysis of FCG. 

2.6. A Brief Background on Damage Models 

Damage models describe the failure process by means of damage evolution 

[73]. Damage is macroscopically related to a decrease in the material stiffness, strength 

and remaining ductility [25]. However, despite the importance of these effects, which are 

physically measurable, this variable is not easily assessable.  Damage is proposed to be 

linked to continuous solid mechanics variables as stress and strain [74] and can be 

evaluated using either coupled or uncoupled models.  

Uncoupled models predict the fracture initiation, upon the onset of micro void 

coalescence, by means of a fracture criterion in the post processing step [75]. Damage is 

considered independent of the material plastic behaviour, i.e. the damage accumulation do 

not affect the material plastic properties [72]. According to these models, fracture occurs 

when the cumulative damage exceeds a critical value [76]. On the other hand, the coupled 

models are interconnected with the material constitutive equations through the damage 

accumulation due to micro void nucleation, growth and coalescence. Thus, the mechanical 

response of the materials is a function of damage. These models can be classified into 

damage-based models and micromechanical-based[75].  

Damage-based models derive from classical continuous damage mechanics. 

This approach, as proposed by Lemaitre [77],  macroscopically defines a damage variable 

as an effective surface density of cracks within a plane. Other similar methods aggregate 

the phenomena behind nucleation, growth and coalescence mechanisms in a 

phenomenological law. Therefore, the constitutive models are based on the macroscopic 

behaviour of the material [76]. Regarding the micro-mechanical approaches, they explicitly 

models the material microstructure through unit cell simulations [75]. In other words, 
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ductile failure and damage accumulation are predicted through the consideration of 

individual micro-defects in the material [78]. As stated before, voids are innate defects to 

the materials. Also, the presence of second phase particles and impurities eases the 

nucleation of new vacancies. In the occurrence of important plastic deformations, voids 

grow and eventually coalesce leading to the formation and/or propagation of micro-cracks. 

Thus, ductile fracture, material porosity and micro-voids are intimately related [79]. This is 

the main advantage of micro-mechanical damage models: being able to describe the 

evolution of damage on a material, through the void’s distribution, allows the accurate 

prediction of ductile failure. Since it is not computationally feasible to take in account each 

void in the material, the influence of the voids is incorporated into the constitutive models 

[80].  

In this study, the coupled micromechanical damage model initial developed by 

Gurson and  further improved by Tvergaard and Needleman is adopted in the numerical 

analysis of FCG [81]. 
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3. GTN DAMAGE MODEL 

Using micro-mechanical considerations, Gurson [82] developed a model which 

introduced a new yield surface for materials containing either spherical or cylindrical 

voids. The yield criterion was derived by performing an upper bound limit load analysis on 

the representative volume elements (RVE) - either a spherical void within a spherical RVE 

or a cylindrical void within a cylindrical RVE. The matrix was assumed to be free of voids 

and obeyed the pressure insensitive von Mises criterion. Finally, the pressure sensitive 

yield surface, which takes in account the damage accumulation, was achieved assuming a 

flow rule [70][72].  

The Gurson yield surface is given, for spherical voids, by [83]: 

 𝜙 = (
σ̄2

𝜎y
)

2

+ 2𝑓 cosh (
tr 𝝈

2𝜎y
) − 1 − 𝑓2  , (3.1) 

where 𝑓 is the void volume fraction, σ̄ is the von Mises equivalent stress, tr 𝝈 the trace of 

the stress tensor and 𝜎y the flow stress given by the hardening law. The assumed flow rule 

is expressed by: 

 
𝜺̇𝑝 = 𝛾̇

𝜕𝜙

𝜕𝝈
= 𝜺𝑑̇

𝑝 + 𝜺̇𝑣
𝑝 = 𝛾̇𝝈′ +

1

3
𝛾̇𝑓𝜎y sinh (

3𝑝

2𝜎y
) 𝑰  , (3.2) 

where the plastic strain rate tensor, 𝜺̇𝑝, involves two terms: the deviatoric, 𝜺𝑑̇
𝑝
, and 

volumetric, 𝜺̇𝑣
𝑝
, plastic strains.  𝛾̇ is the plastic multiplier, 𝑝 the hydrostatic-pressure, 𝝈′ 

the deviatoric stress tensor and 𝑰 the identity matrix [84].   

 The evolution law for the void volume fraction is given, for the original 

Gurson’s model, by: 

 𝑓̇ = (1 − 𝑓)𝜺̇𝑣
𝑝 = (𝑓 − 𝑓2)𝛾̇𝜎y sinh (

3𝑝

2𝜎y
) , (3.3) 

Adjustments to the initial yield surface were proposed by Tvergaard [85] [86] 

to better represent the material response predicted by numerical cell studies [87]. 

 𝜙 = (
σ̄2

𝜎y
)

2

+ 2𝑞1𝑓 cosh (𝑞2

tr 𝝈

2𝜎y
) − 1 − 𝑞3𝑓2  , (3.4) 

𝑞1, 𝑞2 and 𝑞3 are designated void interaction parameters, as they adjust Gurson’s yield 

surface to account for the influence of neighboring voids. 
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In Gurson’s criterion, the mechanisms of ductile fracture are modelled by 

explicitly monitoring the void volume fraction [72]. However, no void volume fraction 

evolution will be predicted if the initial void ratio is zero. Thus, several mechanisms were 

proposed to modify the model in order to consider void nucleation, depending on strain 

history [84]. Chu and Needleman [88] proposed the most widely used nucleation law, 

which considers nucleation, following a normal distribution, in a statistical way. Later, 

Tvergaard and Needleman [89], using this nucleation law, modified Gurson’s criterion to 

account for the onset of void coalescence prior to material fracture.  

 𝜙 = (
𝑞2

𝜎y
)

2

+ 2𝑞1𝑓∗ cosh (𝑞2

tr 𝝈

2𝜎y
) − 1 − 𝑞3𝑓∗2  , (3.5) 

Equation 3.6 defines the so-called Gurson-Tvergaard-Needleman (GTN) 

model, which considers the effective porosity, 𝑓∗:  

 𝑓∗ = {

𝑓                                       ,   𝑓 ≤ 𝑓c

𝑓c + (
1

𝑞1
− 𝑓c)

𝑓 − 𝑓c

𝑓f − 𝑓c
 ,   𝑓 ≥ 𝑓c

   ,   (3.6) 

where  𝑓c and 𝑓f represents the critical and fracture void volume fraction, respectively. The 

void coalescence mechanisms become active if the void volume fraction is higher than the 

critical value. Whenever the void volume fraction is less than the critical value, the 

effective porosity is attained from both void nucleation and growth mechanisms: 

  𝑓̇ = 𝑓̇𝑛 + 𝑓̇𝑔, (3.7) 

where the void growth mechanism is given by Equation 3.4. On the other hand, the 

nucleation mechanism was defined by Chu and Needleman, which is driven either by 

plastic strain or hydrostatic pressure:  

 𝑓̇𝑛 = 𝐴N𝜀̇
 𝑝

+ 𝐵N𝑝̇, (3.8) 

where 𝜀̇
 𝑝

 represents the rate of the accumulated plastic strain and 𝑝̇ the increment of the 

hydrostatic pressure. The proportionally constants 𝐴N and  𝐵N are given by: 

 𝐴N = {

0                                                     ,   𝑝 < 0

𝑓N

𝑠N√2𝜋
exp [−

1

2
(

𝜀̇
 𝑝

− 𝜀N

𝑠N
)]  ,   𝑝 ≥ 0

     ,   (3.9) 

 

𝐵N = {

  0                                              ,    𝑝̇ < 0
𝑓P

𝑠P√2𝜋
exp [−

1

2
(

𝑝 − 𝜎P

𝑠P
)] ,   𝑝̇ ≥ 0

           ,   (3.10) 
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𝜀N and 𝜎P are the mean value of the Gaussian distribution. 𝑠N and 𝑠P represent the standard 

deviations. 𝑓N and 𝑓P are the total void volume fraction that can be nucleated by the plastic 

strain rate and by the mean stress rate, respectively [72]. 

3.1. Calibration of the GTN model parameters 

The GTN model has a total of twelve parameters:  

• the void interaction parameters which characterise the yield behaviour 

of the materials (𝑞1, 𝑞2 and 𝑞3) 

• the material parameters, used to model void nucleation 

(𝜀𝑁 , 𝜎P, 𝑠N, 𝑠P, 𝑓N and 𝑓P) 

• ductile fracture parameters that describe the evolution of void growth 

up to coalescence and final failure (𝑓c and 𝑓f) 

• the initial porosity of the material (𝑓0) 

Often, the identification of all the twelve parameters of the GTN model is an 

overly complex approach [90]. Thus, for the void interaction parameters it is common to 

consider the values recommended by Tvergaard [86]: 𝑞1 = 1.5; 𝑞2 = 1.0; 𝑞3 = 2.25 

[91][92]. The material parameters can be identified by measuring changes on displacement 

fields, forces and moments [93] or by metallurgical observations [92][23]. In these 

approaches the parameters are found by fitting numerical and experimental curves through 

optimization algorithms. To reduce the number of material parameters it is usual to 

consider 𝜀N = 0.3 and 𝑠N = 0.1 [94].  The ductile fracture parameters may be determined 

from numerical simulations at the point where the model attains the displacement to 

fracture, experimentally observed [95][96]. 

In addition to the specific parameters involved in GTN model, the hardening 

law of the matrix material has also to be defined. In case of monotonic loadings, the 

hardening law parameters may be calibrated to fit the stress-strain curve of the actual 

porous material obtained from quasi-static uniaxial tensile tests of un-notched specimens 

up to necking  [72]. More recently, genetic and machine learning algorithms allowed the 

identification of the coupled GTN model parameters in a timely manner 

[97][98].Nevertheless, these methods require much data, regarding the material mechanical 

response, which has to be obtained through several experimental tests. 
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3.2. Applications and modifications to the classical GTN 
model 

The GTN model has been used in several engineering applications, namely: the 

failure prediction in welded joints [87], rolling [99], forging [100] and sheet metal forming 

processes [101][102], fatigue life predictions [103], etc. Despite its widespread use, the 

GTN model has some drawbacks and has undergone several changes through time.  

The GTN model identifies the effective porosity as fracture driving force. An 

increase in 𝑓∗, due to void growth, requires a positive mean stress. Thus, in low triaxial 

and shearing loadings, under zero mean pressure, the model predicts no increase in damage 

[104]. Accordingly, some modifications to the classical GTN model have been suggested. 

Nahshon [105] proposed an extension of the Gurson model that incorporates damage 

growth under low triaxiality straining for shear-dominated states. Xue [106] introduced a 

separate internal damage variable which differs from the conventional void volume 

fraction. 

In Gurson-type models, yielding, void evolution and strain to fracture depend 

only on the stress triaxiality [105]. However, Cazacu [107] shown that, for the same stress 

triaxiality, there are two axisymmetric stress states that can only be distinguishable by the 

sign of the third invariant of the stress tensor, 𝐽3
Σ. This way, stress triaxiality by itself is 

insufficient to characterize yielding. Moreover, Alves and Cazacu [79] studied the effects 

of the coupling between the sign of the mean stress and the sign of 𝐽3
Σ. The results shown 

that the porosity rate of growth or collapse is much faster than the achieved through the 

classical Gurson criterion. 
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4. NUMERICAL MODEL 

This study considers a 2024-T351 aluminium alloy. This aluminium alloy is 

currently used in several engineering applications, namely in the aeronautical industry due 

to the high strength to weight ratio.  All numerical simulations were performed with the in-

house finite element code DD3IMP, originally developed to simulate deep-drawing 

processes [108][109]. This finite element code uses an updated Lagrangian scheme to 

describe the evolution of the deformation process. The mechanical model assumes the 

elastic strains to be negligibly small with respect to unity and considers large elastoplastic 

strains and rotations.  

4.1. Material Constitutive Model 

 The mechanical behaviour of this alloy is described by a phenomenological 

elastic–plastic constitutive model. The isotropic elastic behaviour is given by the 

generalized Hooke’s law. Regarding the plastic behaviour, the shape of the yield surface is 

defined by the von Mises yield criterion with an associated flow rule. The evolution of the 

yield surface during plastic deformation is described by the Swift isotropic hardening law 

combined with the kinematic hardening law proposed by Armstrong–Frederick. The Swift 

law is given by: 

 𝜎𝑦(𝜀̄𝑝) = 𝑥 ((
𝑌0

𝑥
)

1
𝑛

+ ε̄p)

𝑛

 (4.1) 

where Y0, x, and n are the material parameters and ε̄p is the equivalent plastic strain. The 

Armstrong–Frederick law is: 

  𝑿̇ = 𝐶X [
𝑋sat

𝜎̅
(𝝈′ − 𝑿)] ε̇̄

p
, with 𝑿̇(0) = 0 (4.2) 

where X is the back stress tensor, XSat and CX are material parameters, and ε̇̄
p
 is the 

accumulated equivalent plastic strain rate. The isotropic and kinematic hardening 

parameters were simultaneously calibrated using the stress–strain curves obtained in 

smooth specimens of the experimental low cycle fatigue tests [110]. Table 4.1 presents the 

list of parameters that define the hardening behaviour of this aluminium alloy. 
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Table 4.1. Elastic-plastic properties of 2024-T351 aluminium alloy and parameters for the Swift 

isotropic hardening law combined with the Armstrong–Frederick kinematic hardening law. 

Material E [GPa] 𝝂 𝐘𝟎 [MPa] 𝒙 [MPa] 𝒏 𝑿𝐒𝐚𝐭 [MPa] 𝑪𝐗 

AA 2024-T351 72.26 0.29 288.96 389.00 0.056 111.84 138.80 

The GTN parameters related with the growth of voids were chosen with base on the 

existent literature regarding this aluminium alloy [97], which  are presented in Table 4.2. 

The initial porosity (f0) was overestimated to the largest value range to overcome the 

inexistence of nucleation and coalescence. 

Table 4.2. The parameters of the GTN model for the of 2024-T351 aluminium alloy. 

Material 𝜺𝐍 𝝈𝐏 𝒔𝐍 𝒔𝐏 𝒇𝐍 𝒇𝐏 𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒇𝐜 𝒇𝐟 𝒇𝟎 

AA 2024-T351 0.25 800 0.1 250 0 0 1.5 1 2.25 - - 0.01 

4.2. Boundary Conditions and Geometry 

Compact tension specimens, in accordance with ASTM E647 standard [111], 

were adopted in this study, whose geometry and main dimensions are shown in Figure 4.1. 

Due to the existent symmetry on the crack plane, only the upper part of the specimen was 

considered. To reduce the computational cost only one layer of elements was considered in 

the thickness direction, resulting in a specimen thickness of 0.1 mm. However, as plane 

strain conditions were imposed, in all simulations of the study, by constraining out of plane 

displacements on a both faces of the component, the obtained results are independent of 

the specimen thickness. 

 

Figure 4.1. Geometry and main dimensions (in mm) of the Compact Tension specimen used in the study of 

the AA2024-T351. [17]. 
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4.3. Specimen Discretization 

The deformable body geometry was discretized with 8-node hexahedral finite 

elements, a selective reduced integration technique was adopted to avoid volumetric 

locking [112]. The mesh of the specimen considers three distinct zones: a very refined area 

near the crack tip, a transition zone, and a coarser mesh in the far side of the crack zone, as 

shown in Figure 4.2. 

   

Figure 4.2. Finite element mesh of the CT specimen. The refined mesh is shown in the image on the bottom 
left corner. Adapted from [20]. 

The region surrounding the crack growth path is meshed with elements of 8 

μm, which allow to accurately evaluate the strong gradients of stresses and strains in this 

zone [113]. Due to the singularity at the crack tip, the more one refines the mesh, in this 

zone, the higher will be the stress. On the other hand, the coarser zone allows to reduce the 

computational cost. In the end 7287 finite elements and 14918 nodes were used. 

4.4. Loading Case 

The specimen is loaded, considering a single point force applied on the 

specimen hole, with a constant amplitude cyclic load. Mode I loading is considered, and 

the variation range was set between Fmin=4.17 N and Fmax=41.7 N, resulting in a stress 

ratio, R=0.1.  Some load cycles are presented, in terms of the pseudo-time in Figure 4.3. 

(a) (b) (c)
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Figure 4.3. Loading cycles applied to the CT specimen. Fmin= 4.17 N, Fmax= 41.67 N, R=0.1. 

4.5. Crack Propagation Scheme 

Considering the geometry of the CT specimen and the applied loading, the 

crack path arises in the symmetry plane, extending over the entire specimen thickness. To 

simulate the continuous advance of the crack tip, the nodes over the crack path are released 

according to the proposed algorithm. However, the discretization of the crack path with 

finite elements leads to a discontinuous crack growth, i.e., each crack increment 

corresponds to one finite element (8 μm size).  

The predicted FCG rate is obtained from the ratio between the crack increment 

(8 μm) and the number of load cycles, ΔN, required to reach the critical value of plastic 

strain: 

 
𝑑𝑎

𝑑𝑁
=

8 μm 

Δ𝑁
 (4.3) 

 Hence, the FCG rate is assumed constant between crack increments. Since 

the crack propagation rate is usually relatively low (<1 μm/cycle), the numerical analysis 

of the crack growth is simplified by considering different sizes for the initial straight crack. 

The continuous advance of the crack tip is appropriately replaced by a set of small crack 

propagations (<500 μm), distributed over the crack path. Initial crack sizes, 𝑎0, of 5, 9, 

11.5, 16.5, 19 and 21.5 mm were considered. Since some crack propagation is required to 

stabilize the cyclic plastic deformation and the crack closure level, the FCG rate is 

evaluated only after that. Finally, the contact between the flanks of the crack is modelled 

considering a rigid plane surface aligned with the crack symmetry plane.  
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4.6. Crack Growth Criteria 

In this study, crack propagation occurs when the critical plastic deformation at 

the crack tip is achieved, whereby the GTN damage model accounted for the progressive 

deterioration of the material due to plastic deformation. This criteria considers the plastic 

deformation to be the main driving force of the FCG, as proposed by Borges et al [17]. 

Therefore, the crack tip node is released when the accumulated plastic strain reaches a 

critical value. The critical plastic strain, 𝜀c
p
, based on a previous study [17], was 

considered: 𝜀c
p

= 1.1. Note that this value corresponds to a plastic strain of 110 %. Using 

the TPS strategy, the plastic strain accumulated in the previous load cycles, at a certain 

node are not reset when a propagation occurs. This strategy is adopted because the plastic 

strain is irreversible, allowing a more realistic modelling of the processes occurring at the 

crack tip. 
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5. NUMERICAL RESULTS AND DISCUSSION 

This section starts with the comparison between the proposed numerical model 

with and without GTN, whereby only the process of growth of micro-voids is active. Then, 

the influence of stress triaxiality on the porosity evolution due to the plastic strain 

accumulation is evaluated, neglecting the process of coalescence in the analysis. Finally, 

the influence of each GTN parameter on the predicted da/dN is assessed, allowing to 

perform a sensitivity analysis. 

5.1. FCG modelling with and without GTN. 

5.1.1. Fatigue Crack Growth Rate 

Figure 5.1 shows the da/dN-ΔK curves predicted numerically with and without 

GTN model. The horizontal and vertical axes are presented in log-log scales, as is usual. 

The da/dN-ΔK curve without GTN follows an approximately linear trend in log-log scale, 

through all ΔK values studied, with a Paris law coefficient, m=2.62. The inclusion of GTN 

damage model significant changes the predicted da/dN. For low values of K there is a 

decrease of da/dN with the inclusion of the growth of micro-voids in the model, while for 

high values of K the opposite trend is observed. The inversion of behaviour occurs at 

about K=11.5 MPa.m0.5. The model with GTN roughly follows a linear trend for lower 

values of ΔK, but the linearity disappears when the full range of K is included. The Paris 

law coefficient is also higher (m=3.36).  

The nucleation, growth and coalescence of micro-voids phenomena are 

supposed to deteriorate the material stiffness. Moreover, this ductile damage model is 

directly related to the plastic deformation, which is important at the crack tip. Thus, it was 

expected that the introduction of the GTN damage model would result in an increase in the 

FCGR. Nevertheless, the growth of micro-voids in the model may have a protective 

behaviour, reducing the FCGR. An explanation for the odd behaviour observed at 

relatively low values of K is required. 
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Figure 5.1. da/dN-ΔK curves in log-log scale (plane strain; R = 0.1; f0 = 0.01; q1 = 1.5; q2 = 1 and q3 = 2.25, 
nucleation and coalescence are disabled). The Paris-Erdogan law parameters are shown on the equations 

related to the trend-lines. 

5.1.2. Cumulative Plastic Strain 

To explain the influence of the GTN model on FCGR, both plastic strain and 

crack closure were studied for two different values of stress intensity factor. Accordingly, 

two initial crack lengths are evaluated, namely a0=11.5 mm, which corresponds to a stage 

where the model with GTN predicts a lower da/dN than the model without GTN; and 

a0=21.5 mm, which corresponds to the final phase of the crack growth, where the FCGR is 

higher with GTN (see Fig 5.1). Figure 5.2a shows the evolution of the plastic strain during 

the period between the 25th and 26th crack propagations. This corresponds to a steady state 

of the propagation, for both models (with and without GTN). Time was reset, on the instant 

where the previous propagation occurred, so that propagations from both models could be 

compared. The results show that the plastic strain presents a sudden drop at each 

propagation. Since this entity is evaluated at the node containing the crack tip, when 

propagation occurs, the crack-tip advances to the following node where the plastic strain is 

still small. Then, the subsequent load cycles cause the plastic strain to increase in a 

cumulative way. However, the plastic strain clearly grows faster in the model without 

GTN, i.e.  the critical plastic strain is achieved faster. Once the critical strain, 𝜀c
p
, is 

achieved, node release occurs for both models, and a new accumulation begins. 
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Figure 5.2b presents the plastic strain evolution at the crack tip during a single 

load cycle, immediately before the 26th crack propagation, comparing the two models. The 

initial constant value is due to crack closure and consequent absent of plastic deformation 

at the crack tip. The plastic deformation starts later in the model with GTN, which may be 

explained by different crack closure levels. The increase of load up to the maximum value 

produces an accumulated plastic strain, which is higher in the model without GTN. The 

same trend is followed in the unloading phase. This explains the higher slope of the plastic 

strain curve observed in Figure 5.2 for the model without GTN. 

 

Figure 5.2. Comparison of the plastic strain evolution with and without GTN for a0=11.5 mm. (a) time period 
between the 25th and the 26th node releases; (b) a single load cycle, immediately before the 26th 

propagation. 

Figures 5.3 presents analogous results, but for a0=21.5 mm, corresponding to 

the period between the 36th and the 37th crack propagations. Different propagations were 

chosen because the crack growth stabilization is slower for higher initial crack lengths. The 

values of plastic strain after each node release are higher than the ones observed in Figure 

5.2a. Since the size of cyclic plastic zone increases with ΔK, larger initial plastic strains 

may be expected for higher ΔK levels. Moreover, the inclusion of GTN also results in a 

higher cumulative plastic strain in the crack tip at the beginning of the propagations, which 

is linked to the increase of plastic strain produced by the GTN. The application of the load 

cycles leads to an increase of the plastic strain in the crack tip (see Figure 5.3a). However, 

it grows faster using the model with GTN. Regarding the evolution of the plastic strain at 

the crack tip during a single load cycle, the results in Figure 5.3b show that plastic strain 

starts to increase at approximately the same time for both models. However, the increase of 

the plastic strain is much faster using the GTN model. Thus, the inclusion of the damage 
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model has a detrimental effect on the material strength, increasing the plastic strain rate 

during the loading. Similar to the previous case, the same trend is verified in the unloading 

stage.  

 

Figure 5.3. Comparison of the plastic strain evolution with and without GTN for a0=21.5 mm. (a) time period 
between the 36th and the 37th node releases; (b) a single load cycle, immediately before the 37th 

propagation. 

5.1.3. Size of the Plastic Zone at the Crack Tip 

The results shown in Figure 5.2a and 5.3a indicate that the plastic strain at the 

beginning of each new propagation is higher in the case of the model with GTN. This is 

explained by the occurrence of higher plastic zones at the crack tip, which lead to sooner 

increments of plastic strain in farthest nodes. The distance between the node containing the 

crack tip and the first node exhibiting no plastic strain was measured in the propagation 

direction. The size of the plastic zone is presented in Figure 5.4, comparing the two crack 

lengths (a0=11.5 mm and a0=21.5 mm), as well as both models: with and without damage 

model. The horizontal axis presents the fraction of load cycles required to reach the critical 

plastic strain. Since the plastic zone size is significatively larger than the crack increment 

(8 μm), it is approximately constant within each propagation. On the other hand, for both 

initial crack lengths analysed, the model with GTN leads to larger plastic zone sizes, 

explaining the higher initial plastic strain at the beginning of each new propagation. Also, 

higher a0 leads to higher dimensions of the plastic zone due to the higher ΔK levels 

occurring at the crack tip. 
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Figure 5.4. Size of the plastic zone at the crack tip evaluated for a0 = 11.5 mm and a0 = 21.5 mm considering 
both models: with and without GTN. 

5.1.4. Plasticity Induced Crack Closure 

The evolution of the plastic strain explains the differences in the behaviour of 

the da/dN-ΔK curves. Figure 5.5 presents the crack tip opening displacement (CTOD) 

measured at the first node behind the crack tip, at a distance of 8 m. Figure 5.5a shows 

the CTOD in the last load cycle before the 26th propagation for a0=11.5 mm, while Figure 

5.5b shows analogous results but for the 37th propagation of a0=21.5 mm. The CTOD 

curves were evaluated for the load cycles for which the plastic strain evolution was 

evaluated in Figures 5.2b and 5.3b. Considering the damage model, lower CTOD levels are 

predicted for both crack lengths. This can be explained by the fact that the higher plastic 

strain induced by the GTN results in higher plastic wakes at the crack flanks and, 

consequentially a higher trend to close the crack. The crack closure reduces the effective 

load range, protecting the material from FCG since the crack only grows when it is open. 

The lower growth rate of plastic strain, for a0=11.5 mm, matches the higher closure level 

attained with the model considering GTN. Note that, without GTN, there is no crack 

closure. On the other hand, for a0=21.5 mm the crack closure is very small, even with 

GTN. Thus, as the crack closure ceases to protect the material, the higher plastic strain 

achieved with GTN model causes a faster FCG rate.  
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Figure 5.5. Comparison of CTOD predicted with and without GTN for: (a) a0=11.5 mm, at the same load 
cycle of Figure 4b, (b) a0=21.5 mm, at the same load cycles of Figure 5b (plane strain). 

The crack closure level was evaluated during an entire propagation for both 

initial crack lengths, with and without GTN. The crack closure level was quantified, over 

the load increments, considering the contact status of the first node behind the crack tip, 

using the parameter: 

 𝑈∗ =
𝐹open − 𝐹min

𝐹max − 𝐹min
 (5.1) 

where Fopen is the crack opening load, Fmin is the minimum load and Fmax is the maximum 

load. This parameter quantifies the fraction of load cycle during which the crack is closed.  

Figure 5.6a presents the crack closure evolution between the 25th and the 26th 

crack propagations of a0=11.5 mm, comparing the predictions with and without damage 

model. Crack closure is evaluated as a function of propagation fraction, i.e., the node 

release occurs for 100% of propagation. A transient behaviour is registered at the 

beginning, consisting of a fast increase followed by a progressive decrease to a stable 

value. Initially, crack closure rises due to the accumulation of plastic strain and formation 

of residual plastic wake. During the transient stage, crack closure is very sensible to the 

point where it is measured. The successive load cycles cause the crack tip to blunt reducing 

the crack closure level. Note that the trend of the crack closure during the loading cycles is 

the same for both models; there is only a vertical shift of the curve referring to the model 

considering GTN. However, while the model without GTN completely loses crack closure, 

the model with GTN stabilizes at U*=20%. Other authors also found no closure in their 

numerical studies without GTN, namely Zhao and Tong [114] in a CT specimen and Vor et 

al. [115] at the centre of a 3D CT specimen. 
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Figure 5.6b shows similar results but between the 36th and the 37th node 

releases of a0=21.5 mm. For this initial crack length, the propagation with GTN takes 

considerably less cycles. Globally, crack closure is higher for the model with GTN. 

Nevertheless, the trend followed by both models is different from the one registered for 

a0=11.5 mm. The initial peak is now more pronounced, which is due to the higher plastic 

strain produced by the harsher stress field at the crack tip induced by higher ΔK level. The 

subsequent decrease of U* is a blunting effect caused by the cyclic loading, which moves 

the node behind crack tip [116]. This phenomenon is related with strain ratcheting, and 

greatly depends on material, being more relevant for material models comprising the 

kinematic hardening component. It also depends on stress state, being more relevant for 

plane strain state, as is the case [116]. The numerical model comprises both conditions, 

thus this effect is expected to be relevant, causing the crack closure to eventually cease. 

Even if the crack closure remains higher for the model with the GTN, the protection to the 

material is reduced approaching it to the levels showed by the model without GTN. As the 

protection decays the higher tendency to accumulate plastic strain, due to the deterioration 

of the material through porosity, comes on top. Crack closure is therefore the key to 

understand the da/dN behaviour of both models. 

 

Figure 5.6. Crack closure level with and without GTN (a) a0=11.5 mm, between the 25th and 26th crack 
propagations. (b) a0=21.5 mm, between the 36th and 37th crack propagations. The results are presented in 

percentage up to propagation. 

Finally, crack closure was disabled in the model with GTN. This is achieved 

numerically by deactivating the contact of the nodes that cover the crack flanks. Figure 

5.7a presents the plastic strain evolution, throughout the time period between the 25th and 

26th propagations, for the two specifications of the model with GTN – with and without 

contact – for a0=11.5 mm. Figure 5.7b presents analogous results but for the plastic strain 
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build-up at the single load cycle, immediately before the 26th propagation. Figure 5.7a 

shows that the plastic strain starts from similar levels after the 25th node release. The 

subsequent increase of plastic strain is much faster without crack closure. Thus, the da/dN 

differences are only consequence of the much faster accumulation of plastic strain. Figure 

5.7b shows that plastic strain starts to rise much sooner without crack closure. In other 

words, crack closure delays the start of the accumulation of plastic strain at each loading 

cycle. This means that the contact of the crack flanks reduces the range of effective stress 

at the crack tip. Since the plastic strain is a nonlinear entity, during the growing stage it 

follows a nonlinear trend. Nevertheless, this trend is essentially the same for both 

variations of the model, as indicated by the dashed lines in figure 5.7. With crack closure, 

as its start is delayed, when maximum force is achieved the accumulation is just at a 

different stage of the same path. The same trend is followed during the unloading phase. 

However, crack closure influences the last part of the loading cycle, planning the 

accumulation of plastic strain. 

 

Figure 5.7. Effect of crack closure on plastic strain evolution, for a0 = 11.5 mm. (a) Period between the 25th 
and the 26th crack propagations; (b) A single load cycle, before the 26th crack propagation. 

Figure 5.8 shows da/dN-ΔK results for the model considering GTN model, with 

and without crack closure, in log-log scales. The models without crack closure produce 

higher values of da/dN, which is according to the result in Figure 5.7. The dramatic effect 

of disabling crack closure for a0=11.5 mm is attenuated for a0=21.5 mm. As discussed 

before, the effect of crack closure is of less importance for a0=21.5 mm. Thus, for higher 

values of ΔK, the FCG rate with and without crack closure would be very close, as show in 

Figure 5.8.  
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Figure 5.8. Effect of crack closure on da/dN values (model with GTN). 

5.1.5. Comparison with Experimental Data 

Past simulations of da/dN were based solely on the plastic deformation as a 

driving force, which is independent on mean stress. The inclusion of the nucleation and 

growth of microvoids is a step towards a better understanding of FCG. In fact, the 

existence of intrinsic defects may be expected, resulting from technological processes like 

casting or additive manufacturing. Besides, voids nucleate by debonding of the second 

phase particles. 

Figure 5.9 compares experimental results of da/dN with numerical predictions  

obtained with and without the GTN model. Negleting the inclusion of the growth of 

microvoids, the numerical model underestimates the slope of da/dN-K curve in log-log 

scales. With GTN there is an anti-clockwise rotation of the curve approximating it to the 

experimental results. Note that the Paris-Erdogan law m parameter is 3.62 in the 

experimental results, which is still higher than the ones obtained with GTN (m=3.37) and 

without GTN (m=2.61). However, the model with GTN provides a slope closer to the 

experimental one. 
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Figure 5.9. da/dN-ΔK curves in log-log scale (plane strain; Fmin = 4.17 N; Fmax = 41.7 N; R = 0.1). The Paris-
Erdogan law parameters are shown on the equation related to the trend-line added to the experimental 

results. 

5.2. Porosity, Plastic Strain and Stress Triaxiality Relation 

The plastic strain arising at the crack tip leads to an accumulation of damage 

defined in terms of porosity growth. In other words, the plastic strain is the driving force of 

porosity accumulation. Thus, the implementation of the GTN model, in the existing FCG 

model, was expected to result in a growth of damage in accordance with the evolution of 

plastic strain at the crack tip. To verify this relation, both entities were analysed at the 

crack tip node. Figure 5.10 shows the evolution of porosity with the plastic strain, during 

all load cycles of a single propagation, for three different values of initial crack length, 

namely 5, 11.5 and 21.5 mm. Note that the results are presented in natural scales. There is 

a general trend for the increase of porosity with plastic strain. For a0= 5 mm there is an 

initial non linear increase in porosity, followed by a saturation zone. This means that the 

plastic strain increases but the porosity does not increase. In the case of a0=11.5 mm, the 

initial non linear increase is followed by a linear increase of porosity with the plastic strain. 

For a0=21.5 mm there is neither initial transient regime nor saturation. The maximum 

porosity is near 0.045, i.e., 4.5% of the material volume is composed by voids when the 

plastic strain is of about 110%, for a0=21.5 mm. 

The increase of the initial crack length tends to increase the porosity growth 

rate, which means that for the same plastic strain there is more porosity. The higher initial 
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crack lengths induce higher ΔK values, which result in higher porosity levels at the instant 

of node release. The values of porosity at the beginning of each increment also depend on 

initial crack length. Note that the numerical model works with a discrete propagation 

scheme: at the critical plastic strain the node containing the crack tip is released. Thus, 

when propagation occurs, the crack tip advances, moving away from the highly strained 

zone. Using the TPS approach, the plastic strain and porosity occurring at the node 

immediately ahead of the crack tip is the starting point when propagation occurs. However, 

this change on the node containing the crack-tip leads to sudden changes in the values of 

the variables under analysis. For a0=21.5 mm, both plastic strain and porosity are higher 

than for the remaining initial crack lengths. On its way, for a0=11.5 mm, only porosity is 

set to higher level than for the lower initial crack length. This occurs because higher stress 

intensity factors result in higher plastically affected zones, and higher strains. This way, 

when crack advances it reaches differently affected zones explaining the obtained values of 

porosity and plastic strain. The successive load cycles cause the porosity to gradually 

grow. Therefore, the premise that the build-up of plastic strain causes an accumulation of 

plastic damage is verified.  

Another interesting detail perceptible in Figure 5.10 is the fact that porosity 

shows an oscillating behaviour. This is more perceptible for a0=21.5 mm, due to the higher 

oscillation’s amplitude, but it also occurs for the remaining values of a0. During the 

unloading phase of each loading cycle, the stress verified at the crack tip is of compressive 

nature. This stress causes the micro voids on the material to partially close and 

consequently the porosity is reduced. Nevertheless, the micro-cavities do not disappear 

since the damage is irreversible.  

 

Figure 5.10. Porosity evolution with plastic strain growth for different initial crack lengths (a0) in natural 
scales. Crack closure is enabled. 
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The differences in the evolution of the porosity with the plastic strain can be 

explained by the stress triaxiality at the crack tip. Indeed, using the GTN damage model, 

the void fraction evolution is significative affected by the stress triaxiality [117]. The 

present model only considers the growth of micro voids, being this process highly 

influenced by the stress triaxiality [67]. Figure 5.11a presents the evolution of the stress 

triaxiality at the crack tip during the propagation shown in Figure 5.2, comparing three 

different crack lengths. Figure 5.11b presents analogous results but for the porosity 

evolution. The horizontal axis denotes the progress up to propagation making possible to 

compare propagations with different lengths of time. Both results (stress triaxiality and 

porosity) were predicted at the maximum load instant. Globally, higher ΔK generate higher 

porosity levels, as highlighted in fig 5.11b. However, the stress triaxiality is initially very 

high for a0=5 mm, generating a fast increase in porosity, as shown in Figure 5.11b. Then, 

stress triaxiality stabilizes, which is coinciding with the saturation of porosity. Comparing 

with the lower crack length, for a0=11.5 mm the stress triaxiality is lower at the beginning, 

corresponding to a less abrupt increase in porosity. Also, stress triaxiality suffers a much 

less significant drop, which can explain the inexistence of stabilization on the porosity for 

this a0. For the higher initial crack length, the stress triaxiality is relatively high, presenting 

a slight increase during the propagation, which leads to the higher slope attained for 

porosity.  

 

Figure 5.11. (a) Stress triaxiality throughout the entire propagation studied in Figure 5.2.                                
(b) Porosity evolution for the same propagation. 
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5.3. Influence of Each GTN Parameter on FCG 

5.3.1. Effect of Initial Void Volume Fraction, f0 

The initial void volume fraction, f0, represents the fraction of material volume, 

in terms of cells, that is composed by voids a priori. Note that assuming positive f0 imposes 

the existence of defects innate to the material. Moreover, if the nucleation process is 

disabled, as it is the case, the damage evolution is represented only by the growth of the 

pre-existing micro-voids. The primordial step to understand the influence of the different 

GTN parameters on the porosity, plastic strain and, consequentially, fatigue crack growth 

rate, is to understand the effect of the pre-existing voids. Therefore, da/dN was studied for 

two different crack lengths: a0=11.5 mm and a0=19 mm, which will lead to different ΔK 

values. Figure 5.12 shows the da/dN values, in natural scales, for the two initial crack 

lengths in terms of four different initial porosities: 0.005, 0.01, 0.02 and 0.03. All the 

values were obtained regarding the same propagation, at the stable FCG zone, i.e., after the 

initial transient regime associated with the stabilization of cyclic plastic deformation and 

formation of residual plastic wake. For a0=19 mm there is a clear influence of the initial 

porosity on the da/dN. Moreover, it was expected that a higher initial porosity would lead 

to higher plastic strain levels, and this way, higher propagation rates. However, the results 

follow the opposite trend, i.e., for lower initial porosities the propagation rate is higher, 

stabilizing for higher levels of porosity as show by the horizontal dotted line. A similar 

trend is followed for a0=11.5 mm, but in this case the difference is much smaller. The 

stabilization in da/dN also occurs sooner. Crack closure was disabled for a0=11.5 mm to 

identify the effect of this mechanism on da/dN. Results show that in the absence of crack 

closure the da/dN rises, in an approximately linear fashion, with f0, as the dotted line 

indicates. However, the crack closure is a crucial mechanism in FCG since it is always 

physically present. Thus, it will be considered in the analysis of the following parameters. 
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Figure 5.12 Fatigue crack growth rate in terms of the initial porosity for two distinct crack lengths (a0=11.5 
mm and a0=19 mm). Results are shown in natural scales. Nucleation and coalescence are disabled

 (q1=1.5, q2=1, q3=2.25. Fmax=41.67, Fmin=4.17, R=0.1, plane strain state). 

To explain the unexpected behaviour observed in Figure 5.12, the porosity 

evolution was studied, in terms of the plastic strain build-up through the load cycles 

between the 24th and 25th propagation, for all the porosity values on the two distinct crack 

lengths. Figure 5.13a shows the referred results for a0=11.5 mm, while Figure 5.13b 

presents analogous data for a0=19 mm. The porosity at the beginning of a propagation is 

higher for higher values of 𝑓0. On the other hand, the slope of the curves is slightly higher 

for lower values of 𝑓0 . However, some saturation occurs for 𝑓0 = 0.02 and 𝑓0 = 0.03,i.e., 

the initial increase on porosity is higher, but on the latter part of the propagation the void 

growth mechanism saturates. For a0=19 mm, the porosity at the beginning of the 

propagation also rises with the initial porosity. However, the trends followed for the 

different values of 𝑓0 are distinct to the ones verified for a0=11.5 mm: here higher values of 

initial porosity led to higher porosity accumulation rate at the end of the propagation. Thus, 

two conclusions may be drawn. Firstly, the initial porosity affects the growth of the micro-

voids. Secondly, no saturation on the porosity occurs for this initial crack length, due to the 

higher levels of ΔK at the crack tip. Additionally, the porosity variations between the two 

stages of the load cycles are much more relevant for a0=19 mm and the slopes are higher 

for this crack length too, which is also explainable due to the higher ΔK. Although higher 

values of 𝑓0 lead to higher porosity levels, the gap between the curves is not proportional to 

the difference between the initial porosities. Thus, other mechanisms need to be involved 

in the process. 
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Figure 5.13. Porosity growth due to the accumulation of plastic strain for distinct values of 𝑓0 for: (a) 
a0=11.5 mm and (b) a0=19 mm. Results are shown in natural scales. 

The evolution of the porosity is directly influenced by the material parameters 

adopted in the GTN model. The adopted numerical model considers plastic strain to 

determine the crack propagation. Thus, this is the entity studied to explain the da/dN values 

shown previously. Figure 5.14 presents the plastic strain build-up in terms of pseudo-time. 

Note that, similarly to the results presented in section 5.1.2, the instants presented on the 

scale are relative to the beginning of the new propagation. The time was reset to allow the 

comparison of the 25th propagation for different values of initial porosity, which due to the 

da/dN differences occurs at different instants of the simulation. Results are shown in 

natural scales. Figure 5.14a is relative to a0=11.5 mm and Figure 5.14b to a0=19 mm. For 

the first initial crack length, plastic strain grows inside a narrow band delimited by the 

dashed lines, which explains the similar results of da/dN for the different values of 𝑓0 (see 

Figure 5.12). Note that the plastic strain accumulation is slightly faster for the lower initial 

porosity, in comparison with other curves, which is in accordance with the da/dN results. 

Additionally, higher 𝑓0 values result in higher plastic strains at the beginning of the 

propagation, which agrees with the porosity outcomes. For a0=19 mm the plastic strain at 

the beginning of the propagation also increases with 𝑓0, but the values are globally much 

higher for this initial crack length. The porosity levels are distinct for both initial crack 

lengths due to ΔK differences. Regarding the larger value of crack length, curves can be 

grouped in two groups: 𝑓0 = 0.005 and 𝑓0 = 0.01, which result in a faster, slightly linear, 

accumulation, in agreement with the faster da/dN; 𝑓0 = 0.02 and 𝑓0 = 0.03 lead to a 

slower, linear, plastic strain build-ups and propagation rates. This behaviour agrees with 
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the predicted da/dN results shown in Figure 5.12. However, explaining the plastic strain 

trends is the major challenge as it will close the questions loop. 

 

Figure 5.14. Plastic strain accumulation vs pseudo-time for the different values of 𝑓0 for both crack lengths. 
(a) a0=11.5 mm (b) a0=19 mm 

Crack closure is usually able to explain the trends followed by the plastic 

strain. Consequently, an analysis analogous to the ones discussed previously was 

performed at the node immediately behind the crack tip. Figure 5.15a presents the crack 

closure for a0=11.5 mm while Figure 5.15b refers to a0=19 mm. Again, crack closure is 

evaluated as a function of propagation fraction. For a0=11.5 mm, the crack closure trend is 

different for each value of 𝑓0 , explaining the differences in the plastic strain evolution. 

Thus, higher porosities and higher plastic strains generate higher levels of crack closure, 

which protects the material from the lower mechanical resistance conferred by the higher 

porosity, levelling the plastic strain accumulation. The lower level of crack closure for 

𝑓0 = 0.005 results in a faster plastic strain build-up and consequentially a higher da/dN. In 

the case of a0=19 mm, two lowest values of 𝑓0 suffer smaller deformations inducing lower 

levels of crack closure. Strain ratcheting also occurs, disabling the stabilization of crack 

closure. This allows a faster accumulation of plastic strain, especially for 𝑓0 = 0.005, 

where crack closure completely ceases, explaining the higher propagation rates. The 

second group, with higher 𝑓0 values, has a much higher crack closure. Consequentially the 

plastic strain accumulation is delayed resulting in lower levels of da/dN. Note that for this 

second group no strain ratcheting occurs. Thus, the disabling of this phenomenon must be 

related or with the higher 𝑓0 or with the higher void growth rate experienced for higher 

values of 𝑓0. 
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Figure 5.15. Crack closure level for: (a) a0=11.5 mm (b) a0=19 mm. 

5.3.2. Effect of the Tvergaard Parameters, q1, q2 and q3. 

As referred, Tvergaard modified the Gurson’s model to account for micro-void 

interactions adding three additional parameters: q1, q2 and q3. Each one of these parameters 

as a specific effect on the growth of micro voids process. q1 accounts for the loss of 

strength due to the interactions occurring between different voids, q2 and q3 influence the 

effect of the stress triaxiality and void volume fraction, respectively, on the plastic 

potential. Tvergaard proposed standard values for these parameters that are widely used 

(q1=1.5, q2=1, q3=2.25). However, to not disregard the importance of these parameters they 

were also included in the sensitivity analysis. The effect of these parameters on the 

predicted da/dN is shown in Figure 5.16. Each curve represents one of the parameters and 

the results are presented in natural scales. The loading case is the same applied in the study 

of 𝑓0.  

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

U
cl

o
se

(%
)

% to Propagation

f0=0.03

f0=0.02

f0=0.01

f0=0.005

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

U
cl

o
se

(%
)

% to Propagation

f0=0.03

f0=0.02

f0=0.01

f0=0.005

(a) (b) 



 

 

  NUMERICAL RESULTS AND DISCUSSION 

 

 

Edmundo Rafael de Andrade Sérgio  39 

 

 

Figure 5.16. da/dN in terms of each Tvergaard parameter for a0=11.5 mm. Results are shown in natural 
scales. Nucleation and coalescence are disabled. When q1 is changed: q2=1 and q3=2.25. When q2 is 

changed: q1=1.5 and q3=2.25. When q3 is changed: q1=1.5 and q2=1. (f0= 0.01). 

5.3.2.1. Analysis of q1 

Results presented in Figure 5.16 show that the variation of q1 has little effect 

on the FCG rate as the low slope of the trend line as evidences. This means that the build-

up of plastic strain is similar for all values of q1. However, this fact does not mean that 

porosity follows the same trends. These two variables were studied on the node containing 

the crack tip. Figure 5.17a presents the plastic strain evolution, while Figure 5.17b contains 

the porosity evolution. The plastic strain build ups are almost overlapped, for the three 

distinct values of q1, explaining the similar da/dN values. Nevertheless, the overall porosity 

level increases with q1. This increase in porosity occurs due to two conditions: higher 

porosities at the beginning of the new propagation, and higher slopes of the porosity build-

up, during the propagation. Thus, raising q1 results in a harsher loss of strength of the 

material, which manifests itself by an increase in porosity. However, this effect is not as 

intense as the one verified for 𝑓0. Indeed, in the presence of crack closure, the plastic strain 

build-up ends up being unchanged leading to similar values of da/dN.      
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Figure 5.17. (a) Plastic strain evolution for distinct values of q1. The q1=2 curve is almost indistinguishable 
because it is overlapped by the others.  (b) Porosity evolution due to the increase in plastic strain. Results 

are shown in natural scales. 

5.3.2.2. Analysis of q2 

The da/dN values obtained for three distinct values of q2 parameter (0.77; 1 and 1.25) are 

shown in Figure 5.16. There is no linear relation between q2 and da/dN, the higher FCG 

rate is attained for q2=0.77, there is a minimum in the propagation rate for q2=1 and then an 

intermediate value for q2=1.25. This trend indicates that another mechanism may be 

influencing the fatigue crack growth. Empirically, from previous results, one is expecting 

that crack closure is the responsible for the registered variations. Figure 5.18a presents the 

plastic strain accumulation for the studied values of q2. The results agree with the da/dN 

values and with the expectation that crack closure has a main role in the process. The 

smaller value of q2 has a lower initial plastic strain, i.e., after the previous propagation 

occurred. However, the higher plastic strain accumulation rate, evidenced by the higher 

slope of the respective curve, balances this fact resulting in the faster propagation rate. 

Note that for q2=1 and q2=1.25 the plastic strain accumulation rate is similar. However, as 

a higher initial plastic strain arises for q2=1.25 the da/dN ends up being higher. Figure 

5.18b presents the porosity evolution as a function of the plastic strain, for the previous 

values of q2. As expected, higher q2 values are translated in higher porosities. However, the 

relation between the initial plastic strain is not linearly coincident with the initial porosity, 

i.e., only the higher value of q2 has a higher initial plastic strain. Note that even if the 

higher porosity leads to the higher initial plastic strain, this entity is very similar for the 

remaining values of q2 despite the notorious difference in the porosity level. Overall, the 

porosity trends are similar: there is a harsher initial increase followed by a linear evolution 

with a lower slope. The slopes are different for the different q2 values being the initial 

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100

P
la

st
ic

 S
tr

ai
n

t - t0 (s)

q1=2

q1=1.5

q1=1.25
0.015

0.02

0.025

0.03

0.035

0.04

0 0.2 0.4 0.6 0.8 1 1.2

P
o
ro

si
ty

Plastic Strain

q1=2

q1=1.5

q1=1.25

(a) 

(b) 



 

 

  NUMERICAL RESULTS AND DISCUSSION 

 

 

Edmundo Rafael de Andrade Sérgio  41 

 

disparity preserved during the propagation. Thus, higher values of q2 result in higher 

values of porosity, but not necessarily higher da/dN. 

  

Figure 5.18. (a) Plastic strain evolution in terms of the distinct values of q2. (b) Porosity evolution, due to 
the increase in plastic strain, for the same values of q2 previously referred. Results are shown in natural 
scales. 

In order to verify the hypothesis that crack closure has a key role in the 

process, affecting the attained crack propagation rates, the crack closure was studied during 

the propagation (see Figure 5.19). The trends are once again similar for all the values of the 

studied parameter as there is a stabilization after an initial peak in crack closure. The 

higher initial plastic strain, for q2=1.25, results in an initial higher crack closure. After 

stabilizing the maximum value of crack closure is still reached for q2=1.25, but close to the 

one attained for q2=1. This agrees with the similar slopes registered by the plastic strain 

accumulation (see figure 5.18a) for these two values. Note that the slope is slightly lower 

for the higher value of q2, agreeing with the higher crack closure levels attained. The lower 

value in crack closure is obtained for q2=0.77. As the protective fashion induced by this 

entity is lesser, the plastic strain accumulation is faster resulting in a higher da/dN. In 

conclusion, higher porosities result in higher crack closure levels which, consequentially, 

influences da/dN explaining the plastic strain trends and da/dN predictions. 
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Figure 5.19. Crack closure level for distinct values of q2. Results are presented in terms of the percentage of 
load cycles completed to the load cycles needed to propagation to occur. 

5.3.2.3. Analysis of q3 

The da/dN predictions shown in Figure 5.16 demonstrate that the q3 parameter 

has little effect on the FCG rate. The slope of the trend line added to the results is almost 

null. To support this result, the plastic strain accumulation was studied on the node 

containing the crack tip. The obtained results are presented in Figure 5.20a. In fact, the 

curves are almost overlapped agreeing with the da/dN. The porosity evolution is presented 

in Figure 5.20b. The curves are also overlapped, which explains the similarity in the plastic 

strain accumulation. 

  

Figure 5.20. (a) Plastic strain evolution in terms of the distinct values of q3. (b) Porosity evolution, due to 
the increase in plastic strain, for the same values of q3 previously referred. Results are shown in natural 
scales. 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

U
cl

o
se

(%
)

% to Propagation

q2=1.25

q2=1

q2=0.77

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100

P
la

st
ic

 S
tr

ai
n

t - t0 (s)

q3=2.25

q3=1.5625

q3=1

0.015

0.019

0.023

0.027

0.031

0.035

0 0.2 0.4 0.6 0.8 1 1.2

P
o

ro
si

ty

Plastic Strain

q3=2.25

q3=1.5625

q3=1

(a) (b) 



 

 

  NUMERICAL RESULTS AND DISCUSSION 

 

 

Edmundo Rafael de Andrade Sérgio  43 

 

5.3.3. Effect of the Void Fraction to be Nucleated, fN 

The void fraction to be nucleated by means of plastic strain rate, 𝑓N, influences 

the nucleation process by means of Equation (3.10). This parameter is related to the voids 

nucleated by debonding of the second phase particles, in this case, with dependence on the 

history of plastic strain. The physical meaning of this numeric parameter is that a total 

fraction, equal to 𝑓N, of new voids may be nucleated due to plastic strain.  

Figure 5.21 presents the da/dN in terms of different values of 𝑓N in: (a) log-log 

scales for 𝑓N = {0.001; 0.01; 0.1} and (b) natural scales for 𝑓N = {0; 0.001; 0.01; 0.1}. 

These values were selected taking into account the common range of values for this 

aluminium alloy (0.001 to 0.1) [97]. The natural scales were introduced to allow the 

presentation of the point attained for 𝑓N = 0. This value of 𝑓N means that no void 

nucleation occurs due to plastic strain history. Simulations were performed on an initial 

crack length of 11.5 mm, which leads to average levels of ΔK (≈7.9 MPa.m0.5), sitting in 

the Paris-Erdogan regime of a da/dN-ΔK curve. In log-log scales the curve is not linear 

(see Figure 5.21), a small increase in da/dN is achieved from 0.001 to 0.01, which was 

expected since the porosity to be nucleated is smaller or of the magnitude of the considered 

initial porosity (𝑓0 = 0.01). da/dN is then almost doubled when the porosity to be 

nucleated reaches an order of magnitude higher than 𝑓0. In natural scales there is an initial 

increment when nucleation is activated and then the curve stabilizes in a linear trend. 

These results show that unlike the increase in 𝑓0, the activation of the nucleation process, 

and the increase on the nucleated porosity, rise da/dN. Such results suggest that nucleation 

interferes on the crack closure. 

 

Figure 5.21. da/dN in terms of 𝑓N, for an initial crack length of 11.5 mm in: (a) log-log scales; (b) natural 
scales. Coalescence is disabled (q1=1.5, q2=1, q3=2.25, f0=0.01, 𝜀N =0.25 and 𝑠N=0.1). 
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To understand the influence of the nucleation process on the predicted da/dN it 

is crucial to analyse the porosity and plastic strain evolutions. These entities are proven to 

highly influence crack closure and da/dN itself. Figure 5.22a shows the plastic strain 

evolution for the same entire propagation, in terms of pseudo-time, for the different values 

of 𝑓N . Note that alike Figure 5.13a an entire propagation is shown. Figure 5.22b presents 

the porosity evolution with plastic strain build-up for the same entire propagations, 

previously referred. Porosity is shown in logarithmic scale due to the different orders of 

magnitude achieved. The increase on the fraction of porosity to be nucleated causes an 

increase on the plastic strain at the beginning of the propagation. The inclusion of the 

nucleation process accelerates the build-up of plastic strain, explaining the increase in 

da/dN. Moreover, a small nucleation amplitude (𝑓N = 0.001) results in a small increase in 

the accumulation speed of plastic strain, coinciding with the small increment witnessed in 

natural scales. The plastic strain trend keeps almost linear until the order of magnitude of 

the initial porosity is reached. For the higher value, a quadratic behaviour is followed, 

explaining the slope increase in log-log scales. Nucleation was set to occur around a plastic 

strain of 0.25 (𝜀N =0.25) - marked with a vertical dashed line on Figure 5.22b. The 

nucleation process does not change the initial trend followed by porosity. Also, the 

porosity evolution is never completely linear, and it tends to saturate. Saturation occurs 

latter and is more prominent for higher values of 𝑓N. Overall, the porosity level increases 

with the growth of the nucleation amplitude, validating its effect. Additionally, it does not 

seem to influence the growth of micro-voids process. Note that for 𝑓N = 0 the increase in 

porosity is about Δ𝑓void growth = 0.015, which must be due to the growth of micro-voids. 

Using 𝑓N = 0.01 the overall increase in porosity is about Δ𝑓total = 0.025. Although a 

fraction is related to the nucleation process (Δ𝑓Nucleation = 0.01), the remaining part is 

linked to the void growth process Δ𝑓Void Growth = 0.015, which is the same that was 

attained when no nucleation occurred.  
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Figure 5.22. (a) Evolution of plastic strain for the same entire propagation depending on the 𝑓N value. (b) 
Evolution of porosity in terms of plastic strain for the different values of 𝑓N, porosity is in logarithmic scale. 

Crack closure was studied for the same propagation presented in Figure 5.22, 

considering different values of 𝑓N (see Figure 5.23). The crack closure evolution is almost 

independent of 𝑓N. The trend is similar for all the values of the nucleation amplitude: there 

is an initial peak followed by a fast stabilization of crack closure. Note that the curve for 

𝑓N = 0.001 is very close to the curve without nucleation which is in accordance with the 

previous results. Crack closure is higher for 𝑓N = 0.01 , which was also expected due to 

the higher levels of plastic strain occurring at the crack tip. However, it seems to occur a 

saturation for 𝑓N = 0.1 as the significantly higher level of plastic strain does not result in a 

higher crack closure. 

 

Figure 5.23. Crack closure through the same propagation studied in Figure 5.11. 
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5.3.4. Effect of the Mean Nucleation Strain, εN 

Chu and Needleman [42] idealized that nucleation occurs due to a mean plastic 

strain, εN. The nucleation strain is distributed in a Gaussian fashion around that mean. 

Since this distribution is affected by a standard deviation, the nucleation may occur either 

before or after the mean nucleation strain. This parameter is expected to affect the porosity 

distribution through the load cycles of each propagation. Figure 5.24 presents the da/dN 

values, in natural scales, for a crack with an initial length of 11.5 mm, in terms of four 

distinct εN values: 0.15, 0.25, 0.35 and 0.5. Results show that the effect of this parameter in 

terms of da/dN is negligible. 

 

Figure 5.24. da/dN in terms of different values of 𝜀N. Results are presented in natural scales. Coalescence is 
disabled, q1=1.5, q2=1, q3=2.25, f0=0.01, 𝑓N =0.01 and 𝑠N=0.1. 

Porosity and plastic strain were analysed in the node located at the crack tip, 

with the intent to explain the observed da/dN trend. The plastic strain and porosity 

evolutions are presented in Figure 5.25 for a single propagation. The plastic strain at the 

beginning of the propagation is very similar for all the values of 𝜀N. Moreover, its 

evolution is almost linear and the slope variations are contained in a narrow range 

(delimited by the two dashed lines in Figure 5.25a) for the different values of the mean 

nucleation strain. This explains the maintenance of da/dN for the different values of 𝜀N. 

Additionally, the higher value of plastic strain at the beginning of the propagation is 

achieved for 𝜀N = 0.15, which is in accordance with higher value of porosity, at the same 

instant, registered in Figure 5.25b. Since the maximum porosity is reached for 𝜀N = 0.5, 

the second higher plastic strain accumulation rate is obtained for the same value of mean 

nucleation strain. Thus, the plastic strain results are in good agreement with the porosity 
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ones. Figure 5.25b shows that at the beginning of the propagation, smaller values of 𝜀N 

lead to higher initial porosities. This is in accordance with the normal distribution concept. 

Note that a mean nucleation strain of 𝜀N = 0.15 implies that the higher rate of nucleation 

should occur for a plastic strain of 0.15. Results show that, for this 𝜀𝑁, porosity tend to 

increase significantly at the beginning of plastic strain accumulation, saturating for higher 

values of deformation – as it moves away from the nucleation mean strain. On the other 

hand, for 𝜀N = 0.5, the normal distribution is centred with the range of plastic strains that 

were reached. Thus, the porosity evolution has a much more linear trend, as it can be seen 

by the dashed-pointed line. Also, for 𝜀N = 0.15 the plastic strains covered are almost 

completely placed on the left side of the distribution, losing importance with the grow up 

of plastic strain. On the other hand, for 𝜀N = 0.5, the plastic strain covers a much more 

important area of the normal distribution, explaining the higher levels of porosity obtained. 

  

Figure 5.25. (a) Evolution of plastic strain for the same entire propagation depending on the 𝜀𝑁 value. (b) 
Evolution of porosity in terms of plastic strain for the different values of 𝜀N. All the results are in natural 

scales. 

5.3.5. Influence of the Standard Deviation, sN 

Changing the standard deviation of the Gauss distribution allows to model 

different ranges of strain over which voids nucleate. Small standard deviations are 

supposed to cause the porosity to increase in a narrow strain range, while higher deviations 

should smooth the nucleation process in a wide range of strain. Also, narrow ranges of 

nucleation, caused by small values of 𝑠N, were shown to have a destabilizing effect in the 

model [75]. To access the influence of these particularities on the fatigue crack growth 

rate, da/dN was calculated for different values of 𝑠N: 0.01, 0.1 and 0.2. The result is 

presented in Figure 5.26 in natural scales for the same initial crack length: a0=11.5 mm. 
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The influence of this parameter is small - da/dN is basically independent of 𝑠N – as shown 

by the very small slope of the linear trend line. nevertheless, for 𝑠N = 0.1 da/dN is higher 

than for the two remaining values.   

 

Figure 5.26. Effect of 𝒔𝑵 on da/dN. Results are presented in natural scales for three distinct values of 𝒔𝑵: 
0.01, 0.1 and 0.2. Coalescence is disabled, q1=1.5, q2=1, q3=2.25, f0=0.01, 𝑓N =0.01 and 𝜀N=0.25. 

The plastic strain and porosity evolutions were obtained in the node located at 

the crack tip, comparing three values of 𝑠N,. Results of plastic strain are presented in 

Figure 5.27a, for the same single propagation occurred at the end of the process, where 

da/dN has already stabilized. Analogous results, but this time for the porosity, are 

presented in Figure 5.27b. The plastic strain evolution explains the da/dN differences 

shown in Figure 5.26. The trends are similar, but faster accumulations occur for 𝑠N = 0.1 

and 𝑠N = 0.2 , which is in accordance with the faster propagation rates that were obtained. 

The standard deviation parameter affects essentially the porosity evolution, which should 

be able to explain the plastic strain trends. Figure 5.27b shows that the trends of the 

porosity are very distinct. The higher standard deviation results in the more linear trend. 

This was expected since nucleation occurs in a larger range of strains, reducing the 

porosity growth for each plastic strain increment. Obviously, that nucleation will 

eventually cease but this event is very smooth. For 𝑠N = 0.1 there is an initial linear 

increase in porosity until plastic strain reaches about 0.35. This is explained by the fact that 

nucleation occurs around 𝜀N = 0.25 with a standard deviation of 0.1. After that, nucleation 

starts to decrease and porosity rises mainly due to the growth of micro voids resulting in a 

sort of saturation, as only one of the microvoids related processes remains active. This 

transition is less smooth as nucleation was more concentrated, resulting in higher 

increments of porosity.  When this process ceases the slope of the curve for 𝑠N = 0.1 falls 

below the curve for 𝑠N = 0.2 as the last nucleation is still occurring. The higher initial 
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increase in porosity results in a higher plastic strain level at the initial load cycles. The 

higher plastic strain then causes more porosity, like a snowball effect. This explains the 

overall higher porosity for this standard deviation. However, at the end of the propagation, 

the higher nucleation range for 𝑠N = 0.2 ends up offsetting the initial higher increase for 

𝑠N = 0.1 resulting in a similar final porosity value (see Figure 5.27b). 

  

Figure 5.27. (a) Plastic Strain evolution throughout a single propagation for the three values of 𝑠N. (b). 
Porosity build-up for the same propagations referred before. Results are presented in natural scales. 

For 𝑠N = 0.01 the nucleation band is so narrow that porosity jumps. Note that 

porosity is computed at the Gauss points. Since this process has an instability effect, a 

smoothening operation is performed by considering the average in the two Gauss point 

closer to the node containing the crack tip. Therefore, two distinct jumps are captured in 

the process, one for each Gauss point considered in the average, since plastic strain 

increases at different trends in each Gauss point. Thus, when the average is computed the 

porosity rises half of the nucleation amplitude. Accordingly, the porosity was measured, in 

terms of plastic strain growth, for one of the Gauss points closer to the node located at the 

crack tip (Figure 5.28), considering 𝑠N = 0.01. In this case the increase in porosity, due to 

nucleation, is exactly the nucleation amplitude and only one jump is captured. However, a 

higher plastic strain is achieved at the end of the propagation because the crack propagates 

when a plastic strain of 110% is reached in the node, which is the average of the two Gauss 

Points. Thus, the plastic strain in the other Gauss point compensates the higher value 

reached in the one studied in Figure 5.28 and the average at the node will be of 110%. 
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Figure 5.28. Porosity accumulation due to the occurrence of plastic strain at the Gauss point located 
immediately after the node containing the crack tip. 

5.4. Sensitivity Analysis  

In order to access the influence of each parameter previously studied on the 

predicted da/dN, a sensitivity analysis was carried out. This process allows to compare the 

variations on the output entities caused by different input parameters, with different 

physical dimensions.   

The final output of a FCG oriented numerical model is the fatigue crack growth 

rate, expressed by da/dN. Thus, this is the target entity of the sensitivity analysis. The non-

dimensional sensitivity of da/dN, to the selected GTN parameters is expressed as follows: 

: ∇𝑓 =

𝜕 (
𝑑𝑎
𝑑𝑁

)
p

 

𝜕𝑚p
∙

𝑚p

(
𝑑𝑎
𝑑𝑁

)
p

, (5.2) 

where ∇𝑓 is the sensitivity coefficient and 𝑚𝑝 represents the GTN material parameter. 

Each sensitivity coefficient represents the change rate of da/dN caused by a variation of a 

specific material parameter. Note that a sensitivity of 0.5 indicates that a variation of 1% in 

𝑚𝑝 produces a variation of 0.5% in (𝑑𝑎 𝑑𝑁⁄ )p. The results obtained in the sensitivity 

analysis are presented in Figure 5.29. The sensitivity analysis was performed at the central 

point, or at one of the central points in the case where even number of values for the 

parameter were studied. Results show that q2 parameter has by far the biggest influence on 

da/dN. q1 is also important while q3 has almost no influence. 𝑓N is the nucleation related 

parameter with most importance, followed by 𝜀N and finally 𝑠N. 𝑓0 has also low 

importance.   
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Figure 5.29. Sensitivity analysis carried out on the following parameters: 𝑓0 = 0.01; 𝑞1 = 1.5; 𝑞2 = 1; 𝑞3 =
1.5625; 𝑓N = 0.01; 𝜀N = 0.25 and 𝑠N = 0.1. 
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6. CONCLUSIONS 

The finite element method is adopted in the present study to analyse the fatigue 

crack growth. The numerical model assumes that cyclic plastic deformation at the crack tip 

is the FCG driving force. The growth of micro-voids was included in the analysis, 

providing a better modelling of crack tip damage. The influence of each GTN parameter on 

the FCGR was studied and used to perform a sensitivity analysis. The main conclusions 

are: 

• The inclusion of micro-voids in the model based on cumulative plastic strain 

produced an unexpected decrease of da/dN for low values of K. On the other hand, at 

relatively high values of K, the GTN model increased the FCG rate. 

• The inclusion of porosity in the analysis leads to an increase of the plastic 

deformation level, as well as the size of the plastic zones ahead of the crack tip. 

• This higher plastic deformation results in higher plastic wakes at the crack 

flanks, increasing the crack closure level. 

• At low values of K, the inclusion of micro-voids increased plasticity 

induced crack closure (PICC), promoting the reduction of da/dN. At high values of K, 

there is no PICC even with GTN. Therefore, the variations of da/dN are linked with 

changes of cyclic plastic deformation. Disabling the contact of crack flanks, results in an 

increase of da/dN with GTN, for all values of K studied.  

 • There is a global trend for the increase of porosity with plastic strain. An 

oscillatory behaviour is observed in each load cycle because the stress verified at the crack 

tip is of compressive nature during the unloading phase. This causes the micro voids on the 

material to partially close. The increase of crack length, and therefore of K, also increases 

the porosity level. 

• The variation of porosity with plastic strain is relatively complex. This 

complexity was explained by the strong link found between stress triaxiality and porosity 

level. 

• The inclusion of the nucleation process naturally induces higher fatigue crack 

growth rates, while some saturation occurs on crack closure.  
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• The sensitivity analysis showed that the parameter q2, introduced by 

Tvergaard to account for the effect of stress tri-axiality, which tends to be high at a crack 

tip, is the most relevant parameter concerning crack growth rates.  

• The nucleation amplitude, 𝑓N, and q1, another parameter introduced by 

Tvergaard to account for the loss of strength due to inter-void interactions, are of 

secondary importance. Finally, da/dN showed to have almost null sensitivity to q3. 
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7. SUGESTIONS FOR FUTURE WORK 

In continuity to this work, it would be interesting to study the following issues: 

• In a previous work, the numerical predictions based on cyclic plastic 

deformation underestimated the effect of stress ratio. The inclusion of 

the GTN, analogously to what was presented in this study, is expected 

to enhance the influence of the stress ratio. Besides, it is important to 

check if, in the absence of crack closure, the model still verifies no 

effect of stress ratio. This will allow to find if there is an effect of Kmax 

on FCG as it is claimed by several authors. 

• Apply the numerical model used in this study to variable amplitude 

loading cases, namely on the application of single overloads to the 

6082-T6 aluminium alloy. The GTN is expected to increase the crack 

increment affected by the overload, as the initial numerical prediction 

(i.e. without GTN) underestimate the influence of the overloads in 

comparison with experimental results [40]. 

• Apply this model to the study ductile failure in the 18Ni300 maraging 

steel and compare the results with the ones attained experimentally by a 

brazilian partner. The study of ductile failure is of interest to understand 

regime III of da/dN-K curves. 

• Finally, it would be interesting to study environmental damage, which 

is relevant particularly relevant at low K values, near threshold, and at 

elevated temperature. The inclusion of this relevant mechanism on the 

analysis of FCG is of major importance. 
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