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Introduction

Selective Laser Melting (SLM) 

• Parts are built by successively adding material in a layer wise fashion.

• Capable of building parts with complex geometry.
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Introduction

Selective Laser Melting (SLM) 

• Powder material is deposited.

• A laser is used to selectively melt powder material (powder → liquid). 

• The liquid material cools down and solidifies (liquid → solid).
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Introduction

SLM numerical modelling 

• SLM presents multiphysics phenomena across multiple scales.

➢ Micro-scale – modelling the interactions between the laser and powder particles.

➢ Meso-scale – modelling sub-regions of the process (typically scan vectors).

➢ Macro-scale – modelling at part scale.

Micro-scale
Macro-scale

Meso-scale
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Introduction

Finite element method (FEM)

• Typically used in the meso and macro-scale.

• The numerical solution accuracy and the computational time are strongly 

dependent on the adopted finite element mesh.

Temperature field
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Introduction

Non-conforming meshes

• Advantages:

➢ Allow high mesh size gradients.

➢ Hierarchical definition of the mesh.

• Disadvantages:

➢ Presence of hanging nodes.

Level 0

Level 4

Level 0

Level 1

Level 2
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Introduction

Hanging nodes

• Regularly occur when two elements of different refinement levels are

neighbors.

• Node of an element not shared by an adjacent element.

• These nodes require special treatment to ensure the continuity at the inter-

element boundaries.

➢ Penalty method

➢ Lagrangian method

➢ Augmented lagrangian method
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Introduction

Mesh balance

• Creates smoother mesh size gradients.

• Reduces the number of hanging nodes at expense of a higher element count.

• Face balance – ensures no more than 1 hanging node per face.

• Corner balance – ensures no more than 1 hanging node per face and edge. 

Face balanced Corner balancedUnbalanced
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Introduction

Adaptive Mesh Refinement (AMR)  

• Static AMR – Mesh remains unchanged during simulation.

• Dynamic AMR – Mesh is changed during simulation.

Static nonconforming mesh Dynamic nonconforming mesh
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Introduction

Adaptive Mesh Refinement (AMR)  

• Dynamic AMR requires variable remapping.

• Remapping of all numerical variables

– Nodal variables: displacement, temperature, etc.

– State variables: stress, strain, density, etc. 

Transfer Operator

Φ
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Variable Remapping

Remapping algorithms

• Inverse isoparametric mapping

Original meshes Extrapolation Interpolation I Interpolation II
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Variable Remapping

Remapping algorithms  

• Dual Kriging (DK)

Original meshes

DK function
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Results and Discussion

Remapping of a mathematical function 

• x, y and z range between -1 and 1.

• The state variable is always in the range [-1, 1].

• The error is defined as the difference between the approximated and the

analytical value.

Coarsening

Decoarsening

Derefinement

Refinement

Coarsened mesh initial mesh Refined mesh

( ) ( ) ( )( , , ) cos cos cosf x y z x y z  =  
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Results and Discussion

Remapping of a mathematical function 

• Coarsening procedure (Initial mesh → Coarsened mesh)

➢ DK with cubic spline covariance function presents negligible error.

➢ DK with linear spline covariance function increases the error to about 0.02

➢ IIM method provides the worse solution (error about 10 times larger than DK (linear))

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

1 2 3 4 5 6 7 8

E
rr

o
r

Gauss point

IIM DK (linear) DK (cubic)

IIM



B. Marques (bruno.marques@uc.pt) ESAFORM 2022 | Braga | Portugal

15
Results and Discussion

Remapping of a mathematical function 

• Refinement procedure (Initial mesh → Refined mesh)

➢ DK (linear) provides the worse estimative.

➢ IIM develops identical element average error to DK (cubic)

➢ In IIM, most of the GP (87.5%) have error values close to zero

IIM

DK (linear)

DK (cubic)
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Results and Discussion

Remapping of a mathematical function 

• Error propagation

➢ IIM performance was independent of the analyzed cycle.

➢ DK (linear) and DK (cubic) displayed error propagation.

➢ DK (cubic) presents the lowest maximum error value.
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Results and Discussion

Tensile test 

• 1/8 of a standard flat specimen is modelled. Symmetry conditions are applied.

• Refinement criteria: strain gradient.

Eq. Stress

Eq. Strain
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Conclusions 

• The accuracy of each remapping method was evaluated both in the refinement and coarsening

stages.

• The accuracy of the remapping methods was lower in the refinement in comparison with the 

coarsening.

• The effect of the covariance function on the DK method has a significant impact on the 

accuracy.

• DK with cubic spline covariance function performed better than the DK with linear spline

covariance function.

• Error in the approximation of the state variable is lower using the DK method compared with the 

IIM method.

• The IIM method, unlike the DK method, does not suffer from error propagation.

• The simulation of a tensile test showed similar performance when comparing both remapping 

methods.
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Thank you for watching!


